Cargando…
Development of a novel PTD-mediated IVT-mRNA delivery platform for potential protein replacement therapy of metabolic/genetic disorders
The potential clinical applications of the powerful in vitro-transcribed (IVT)-mRNAs, to restore defective protein functions, strongly depend on their successful intracellular delivery and transient translation through the development of safe and efficient delivery platforms. In this study, an innov...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517095/ https://www.ncbi.nlm.nih.gov/pubmed/34703653 http://dx.doi.org/10.1016/j.omtn.2021.09.008 |
Sumario: | The potential clinical applications of the powerful in vitro-transcribed (IVT)-mRNAs, to restore defective protein functions, strongly depend on their successful intracellular delivery and transient translation through the development of safe and efficient delivery platforms. In this study, an innovative (international patent-pending) methodology was developed, combining the IVT-mRNAs with the protein transduction domain (PTD) technology, as an efficient delivery platform. Based on the PTD technology, which enables the intracellular delivery of various cargoes intracellularly, successful conjugation of a PTD to the IVT-mRNAs was achieved and evaluated by band-shift assay and NMR spectroscopy. In addition, the PTD-IVT-mRNAs were applied and evaluated in two protein-disease models, including the mitochondrial disorder fatal infantile cardioencephalomyopathy and cytochrome c oxidase (COX) deficiency (attributed to SCO2 gene mutations) and β-thalassemia. The PTD-IVT-mRNA of SCO2 was successfully transduced and translated to the corresponding Sco2 protein inside the primary fibroblasts of a SCO2/COX-deficient patient, whereas the PTD-IVT-mRNA of β-globin was transduced and translated in bone marrow cells, derived from three β-thalassemic patients. The transducibility and the structural stability of the PDT-IVT-mRNAs, in both cases, were confirmed at the RNA and protein levels. We propose that our novel delivery platform could be clinically applicable as a protein therapy for metabolic/genetic disorders. |
---|