Cargando…

A treatment planning study of urethra-sparing intensity-modulated proton therapy for localized prostate cancer

BACKGROUND AND PURPOSE: Urethra-sparing radiation therapy for localized prostate cancer can reduce the risk of radiation-induced genitourinary toxicity by intentionally underdosing the periurethral transitional zone. We aimed to compare the clinical impact of a urethra-sparing intensity-modulated pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoshimura, Takaaki, Nishioka, Kentaro, Hashimoto, Takayuki, Seki, Kazuya, Kogame, Shouki, Tanaka, Sodai, Kanehira, Takahiro, Tamura, Masaya, Takao, Seishin, Matsuura, Taeko, Kobashi, Keiji, Kato, Fumi, Aoyama, Hidefumi, Shimizu, Shinichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517200/
https://www.ncbi.nlm.nih.gov/pubmed/34693040
http://dx.doi.org/10.1016/j.phro.2021.09.006
Descripción
Sumario:BACKGROUND AND PURPOSE: Urethra-sparing radiation therapy for localized prostate cancer can reduce the risk of radiation-induced genitourinary toxicity by intentionally underdosing the periurethral transitional zone. We aimed to compare the clinical impact of a urethra-sparing intensity-modulated proton therapy (US-IMPT) plan with that of conventional clinical plans without urethral dose reduction. MATERIALS AND METHODS: This study included 13 patients who had undergone proton beam therapy. The prescribed dose was 63 GyE in 21 fractions for 99% of the clinical target volume. To compare the clinical impact of the US-IMPT plan with that of the conventional clinical plan, tumor control probability (TCP) and normal tissue complication probability (NTCP) were calculated with a generalized equivalent uniform dose-based Lyman–Kutcher model using dose volume histograms. The endpoints of these model parameters for the rectum, bladder, and urethra were fistula, contraction, and urethral stricture, respectively. RESULTS: The mean NTCP value for the urethra in US-IMPT was significantly lower than that in the conventional clinical plan (0.6% vs. 1.2%, p < 0.05). There were no statistically significant differences between the conventional and US-IMPT plans regarding the mean minimum dose for the urethra with a 3-mm margin, TCP value, and NTCP value for the rectum and bladder. Additionally, the target dose coverage of all plans in the robustness analysis was within the clinically acceptable range. CONCLUSIONS: Compared with the conventional clinically applied plans, US-IMPT plans have potential clinical advantages and may reduce the risk of genitourinary toxicities, while maintaining the same TCP and NTCP in the rectum and bladder.