Cargando…
Identification of Specific Cell Subpopulations and Marker Genes in Ovarian Cancer Using Single-Cell RNA Sequencing
OBJECTIVE: Ovarian cancer is the deadliest gynaecological cancer globally. In our study, we aimed to analyze specific cell subpopulations and marker genes among ovarian cancer cells by single-cell RNA sequencing (RNA-seq). METHODS: Single-cell RNA-seq data of 66 high-grade serous ovarian cancer cell...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517627/ https://www.ncbi.nlm.nih.gov/pubmed/34660776 http://dx.doi.org/10.1155/2021/1005793 |
_version_ | 1784584059180023808 |
---|---|
author | Li, Yan Wang, Juan Wang, Fang Gao, Chengzhen Cao, Yuanyuan Wang, Jianhua |
author_facet | Li, Yan Wang, Juan Wang, Fang Gao, Chengzhen Cao, Yuanyuan Wang, Jianhua |
author_sort | Li, Yan |
collection | PubMed |
description | OBJECTIVE: Ovarian cancer is the deadliest gynaecological cancer globally. In our study, we aimed to analyze specific cell subpopulations and marker genes among ovarian cancer cells by single-cell RNA sequencing (RNA-seq). METHODS: Single-cell RNA-seq data of 66 high-grade serous ovarian cancer cells were employed from the Gene Expression Omnibus (GEO). Using the Seurat package, we performed quality control to remove cells with low quality. After normalization, we detected highly variable genes across the single cells. Then, principal component analysis (PCA) and cell clustering were performed. The marker genes in different cell clusters were detected. A total of 568 ovarian cancer samples and 8 normal ovarian samples were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes were identified according to ∣log2fold change (FC) | >1 and adjusted p value <0.05. To explore potential biological processes and pathways, functional enrichment analyses were performed. Furthermore, survival analyses of differentially expressed marker genes were performed. RESULTS: After normalization, 6000 highly variable genes were identified across the single cells. The cells were divided into 3 cell populations, including G1, G2M, and S cell cycles. A total of 1,124 differentially expressed genes were identified in ovarian cancer samples. These differentially expressed genes were enriched in several pathways associated with cancer, such as metabolic pathways, pathways in cancer, and PI3K-Akt signaling pathway. Furthermore, marker genes, STAT1, ANP32E, GPRC5A, and EGFL6, were highly expressed in ovarian cancer, while PMP22, FBXO21, and CYB5R3 were lowly expressed in ovarian cancer. These marker genes were positively associated with prognosis of ovarian cancer. CONCLUSION: Our findings revealed specific cell subpopulations and marker genes in ovarian cancer using single-cell RNA-seq, which provided a novel insight into the heterogeneity of ovarian cancer. |
format | Online Article Text |
id | pubmed-8517627 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-85176272021-10-16 Identification of Specific Cell Subpopulations and Marker Genes in Ovarian Cancer Using Single-Cell RNA Sequencing Li, Yan Wang, Juan Wang, Fang Gao, Chengzhen Cao, Yuanyuan Wang, Jianhua Biomed Res Int Research Article OBJECTIVE: Ovarian cancer is the deadliest gynaecological cancer globally. In our study, we aimed to analyze specific cell subpopulations and marker genes among ovarian cancer cells by single-cell RNA sequencing (RNA-seq). METHODS: Single-cell RNA-seq data of 66 high-grade serous ovarian cancer cells were employed from the Gene Expression Omnibus (GEO). Using the Seurat package, we performed quality control to remove cells with low quality. After normalization, we detected highly variable genes across the single cells. Then, principal component analysis (PCA) and cell clustering were performed. The marker genes in different cell clusters were detected. A total of 568 ovarian cancer samples and 8 normal ovarian samples were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes were identified according to ∣log2fold change (FC) | >1 and adjusted p value <0.05. To explore potential biological processes and pathways, functional enrichment analyses were performed. Furthermore, survival analyses of differentially expressed marker genes were performed. RESULTS: After normalization, 6000 highly variable genes were identified across the single cells. The cells were divided into 3 cell populations, including G1, G2M, and S cell cycles. A total of 1,124 differentially expressed genes were identified in ovarian cancer samples. These differentially expressed genes were enriched in several pathways associated with cancer, such as metabolic pathways, pathways in cancer, and PI3K-Akt signaling pathway. Furthermore, marker genes, STAT1, ANP32E, GPRC5A, and EGFL6, were highly expressed in ovarian cancer, while PMP22, FBXO21, and CYB5R3 were lowly expressed in ovarian cancer. These marker genes were positively associated with prognosis of ovarian cancer. CONCLUSION: Our findings revealed specific cell subpopulations and marker genes in ovarian cancer using single-cell RNA-seq, which provided a novel insight into the heterogeneity of ovarian cancer. Hindawi 2021-10-07 /pmc/articles/PMC8517627/ /pubmed/34660776 http://dx.doi.org/10.1155/2021/1005793 Text en Copyright © 2021 Yan Li et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Li, Yan Wang, Juan Wang, Fang Gao, Chengzhen Cao, Yuanyuan Wang, Jianhua Identification of Specific Cell Subpopulations and Marker Genes in Ovarian Cancer Using Single-Cell RNA Sequencing |
title | Identification of Specific Cell Subpopulations and Marker Genes in Ovarian Cancer Using Single-Cell RNA Sequencing |
title_full | Identification of Specific Cell Subpopulations and Marker Genes in Ovarian Cancer Using Single-Cell RNA Sequencing |
title_fullStr | Identification of Specific Cell Subpopulations and Marker Genes in Ovarian Cancer Using Single-Cell RNA Sequencing |
title_full_unstemmed | Identification of Specific Cell Subpopulations and Marker Genes in Ovarian Cancer Using Single-Cell RNA Sequencing |
title_short | Identification of Specific Cell Subpopulations and Marker Genes in Ovarian Cancer Using Single-Cell RNA Sequencing |
title_sort | identification of specific cell subpopulations and marker genes in ovarian cancer using single-cell rna sequencing |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517627/ https://www.ncbi.nlm.nih.gov/pubmed/34660776 http://dx.doi.org/10.1155/2021/1005793 |
work_keys_str_mv | AT liyan identificationofspecificcellsubpopulationsandmarkergenesinovariancancerusingsinglecellrnasequencing AT wangjuan identificationofspecificcellsubpopulationsandmarkergenesinovariancancerusingsinglecellrnasequencing AT wangfang identificationofspecificcellsubpopulationsandmarkergenesinovariancancerusingsinglecellrnasequencing AT gaochengzhen identificationofspecificcellsubpopulationsandmarkergenesinovariancancerusingsinglecellrnasequencing AT caoyuanyuan identificationofspecificcellsubpopulationsandmarkergenesinovariancancerusingsinglecellrnasequencing AT wangjianhua identificationofspecificcellsubpopulationsandmarkergenesinovariancancerusingsinglecellrnasequencing |