Cargando…
Deep learning vs conventional learning algorithms for clinical prediction in Crohn's disease: A proof-of-concept study
BACKGROUND: Traditional methods of developing predictive models in inflammatory bowel diseases (IBD) rely on using statistical regression approaches to deriving clinical scores such as the Crohn's disease (CD) activity index. However, traditional approaches are unable to take advantage of more...
Autores principales: | Con, Danny, van Langenberg, Daniel R, Vasudevan, Abhinav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517788/ https://www.ncbi.nlm.nih.gov/pubmed/34720536 http://dx.doi.org/10.3748/wjg.v27.i38.6476 |
Ejemplares similares
-
Deep learning to predict esophageal variceal bleeding based on endoscopic images
por: Hong, Yu, et al.
Publicado: (2023) -
Magnetic resonance imaging may predict deep remission in patients with perianal fistulizing Crohn's disease
por: Thomassin, Lucie, et al.
Publicado: (2017) -
Fungal dysbiosis predicts the diagnosis of pediatric Crohn’s disease
por: El Mouzan, Mohammad I, et al.
Publicado: (2018) -
The Contribution of Chest X-Ray to Predict Extubation Failure in Mechanically Ventilated Patients Using Machine Learning-Based Algorithms
por: Fukuchi, Kiyoyasu, et al.
Publicado: (2022) -
Deep learning-based radiomics based on contrast-enhanced ultrasound predicts early recurrence and survival outcome in hepatocellular carcinoma
por: Huang, Zhe, et al.
Publicado: (2022)