Cargando…
Predicting Patient Deterioration: A Review of Tools in the Digital Hospital Setting
BACKGROUND: Early warning tools identify patients at risk of deterioration in hospitals. Electronic medical records in hospitals offer real-time data and the opportunity to automate early warning tools and provide real-time, dynamic risk estimates. OBJECTIVE: This review describes published studies...
Autores principales: | Mann, Kay D, Good, Norm M, Fatehi, Farhad, Khanna, Sankalp, Campbell, Victoria, Conway, Roger, Sullivan, Clair, Staib, Andrew, Joyce, Christopher, Cook, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517822/ https://www.ncbi.nlm.nih.gov/pubmed/34591017 http://dx.doi.org/10.2196/28209 |
Ejemplares similares
-
Explainable machine learning for real-time deterioration alert prediction to guide pre-emptive treatment
por: Brankovic, Aida, et al.
Publicado: (2022) -
Author Correction: Explainable machine learning for real-time deterioration alert prediction to guide pre-emptive treatment
por: Brankovic, Aida, et al.
Publicado: (2022) -
Mortality and readmission differences associated with after‐hours hospital admission: A population‐based cohort study in Queensland Australia
por: Bell, Anthony, et al.
Publicado: (2023) -
Predicting clinical deterioration with Q-ADDS compared to NEWS, Between the Flags, and eCART track and trigger tools
por: Campbell, Victoria, et al.
Publicado: (2020) -
Novel behaviour change frameworks for digital health interventions: A critical review
por: Pelly, Melissa, et al.
Publicado: (2023)