Cargando…
A Machine Learning Sepsis Prediction Algorithm for Intended Intensive Care Unit Use (NAVOY Sepsis): Proof-of-Concept Study
BACKGROUND: Despite decades of research, sepsis remains a leading cause of mortality and morbidity in intensive care units worldwide. The key to effective management and patient outcome is early detection, for which no prospectively validated machine learning prediction algorithm is currently availa...
Autores principales: | Persson, Inger, Östling, Andreas, Arlbrandt, Martin, Söderberg, Joakim, Becedas, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517825/ https://www.ncbi.nlm.nih.gov/pubmed/34591016 http://dx.doi.org/10.2196/28000 |
Ejemplares similares
-
The Potential Cost and Cost-Effectiveness Impact of Using a Machine Learning Algorithm for Early Detection of Sepsis in Intensive Care Units in Sweden
por: Ericson, Oskar, et al.
Publicado: (2022) -
Novel application of an automated-machine learning development tool for predicting burn sepsis: proof of concept
por: Tran, Nam K., et al.
Publicado: (2020) -
Peptidome profiling for the immunological stratification in sepsis: a proof of concept study
por: Ledesma, Martín, et al.
Publicado: (2022) -
Sepsis in the intensive care unit
por: Bennett, Sean R.
Publicado: (2015) -
Prediction Models for Sepsis-Associated Thrombocytopenia Risk in Intensive Care Units Based on a Machine Learning Algorithm
por: Jiang, Xuandong, et al.
Publicado: (2022)