Cargando…

Molecular Modeling of the HR2 and Transmembrane Domains of the SARS-CoV-2 S Protein in the Prefusion State

SARS-CoV-2, the causative agent of COVID-19, remains the focus of research worldwide. SARS-CoV-2 entry into the cell starts with its S protein binding to the angiotensin-converting enzyme-2 (ACE2) expressed on the cell surface. The knowledge of the S protein’s spatial structure is indispensable for...

Descripción completa

Detalles Bibliográficos
Autores principales: Bozdaganyan, M. E., Orekhov, P. S., Litvinov, D. S., Novoseletsky, V. N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pleiades Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517943/
https://www.ncbi.nlm.nih.gov/pubmed/34667336
http://dx.doi.org/10.3103/S0096392521030044
Descripción
Sumario:SARS-CoV-2, the causative agent of COVID-19, remains the focus of research worldwide. SARS-CoV-2 entry into the cell starts with its S protein binding to the angiotensin-converting enzyme-2 (ACE2) expressed on the cell surface. The knowledge of the S protein’s spatial structure is indispensable for understanding the molecular principles of its work. The S protein structure has been almost fully described using experimental approaches with the only exception for the protein’s endodomain, the transmembrane domain, and the ectodomain parts adjacent to the latter. The paper reports molecular modelling of the S protein fragment corresponding to its coiled coil HR2 domain and fully palmitoylated transmembrane domain. Model stability in lipid bilayer was confirmed by all-atom and coarse-grained molecular dynamics simulations. It has been demonstrated that palmitoylation leads to a significant decrease in transmembrane domain mobility and local bilayer thickening, which may be relevant for protein trimerization.