Cargando…

Directional Excitation of a High-Density Magnon Gas Using Coherently Driven Spin Waves

[Image: see text] Controlling magnon densities in magnetic materials enables driving spin transport in magnonic devices. We demonstrate the creation of large, out-of-equilibrium magnon densities in a thin-film magnetic insulator via microwave excitation of coherent spin waves and subsequent multimag...

Descripción completa

Detalles Bibliográficos
Autores principales: Simon, Brecht G., Kurdi, Samer, La, Helena, Bertelli, Iacopo, Carmiggelt, Joris J., Ruf, Maximilian, de Jong, Nick, van den Berg, Hans, Katan, Allard J., van der Sar, Toeno
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517981/
https://www.ncbi.nlm.nih.gov/pubmed/34597058
http://dx.doi.org/10.1021/acs.nanolett.1c02654
Descripción
Sumario:[Image: see text] Controlling magnon densities in magnetic materials enables driving spin transport in magnonic devices. We demonstrate the creation of large, out-of-equilibrium magnon densities in a thin-film magnetic insulator via microwave excitation of coherent spin waves and subsequent multimagnon scattering. We image both the coherent spin waves and the resulting incoherent magnon gas using scanning-probe magnetometry based on electron spins in diamond. We find that the gas extends unidirectionally over hundreds of micrometers from the excitation stripline. Surprisingly, the gas density far exceeds that expected for a boson system following a Bose–Einstein distribution with a maximum value of the chemical potential. We characterize the momentum distribution of the gas by measuring the nanoscale spatial decay of the magnetic stray fields. Our results show that driving coherent spin waves leads to a strong out-of-equilibrium occupation of the spin-wave band, opening new possibilities for controlling spin transport and magnetic dynamics in target directions.