Cargando…
The power of ECG in multimodal patient‐specific seizure monitoring: Added value to an EEG‐based detector using limited channels
OBJECTIVE: Wearable seizure detection devices could provide more reliable seizure documentation outside the hospital compared to seizure self‐reporting by patients, which is the current standard. Previously, during the SeizeIT1 project, we studied seizure detection based on behind‐the‐ear electroenc...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8518059/ https://www.ncbi.nlm.nih.gov/pubmed/34240748 http://dx.doi.org/10.1111/epi.16990 |
_version_ | 1784584141917913088 |
---|---|
author | Vandecasteele, Kaat De Cooman, Thomas Chatzichristos, Christos Cleeren, Evy Swinnen, Lauren Macea Ortiz, Jaiver Van Huffel, Sabine Dümpelmann, Matthias Schulze‐Bonhage, Andreas De Vos, Maarten Van Paesschen, Wim Hunyadi, Borbála |
author_facet | Vandecasteele, Kaat De Cooman, Thomas Chatzichristos, Christos Cleeren, Evy Swinnen, Lauren Macea Ortiz, Jaiver Van Huffel, Sabine Dümpelmann, Matthias Schulze‐Bonhage, Andreas De Vos, Maarten Van Paesschen, Wim Hunyadi, Borbála |
author_sort | Vandecasteele, Kaat |
collection | PubMed |
description | OBJECTIVE: Wearable seizure detection devices could provide more reliable seizure documentation outside the hospital compared to seizure self‐reporting by patients, which is the current standard. Previously, during the SeizeIT1 project, we studied seizure detection based on behind‐the‐ear electroencephalography (EEG). However, the obtained sensitivities were too low for practical use, because not all seizures are associated with typical ictal EEG patterns. Therefore, in this paper, we aim to develop a multimodal automated seizure detection algorithm integrating behind‐the‐ear EEG and electrocardiography (ECG) for detecting focal seizures. In this framework, we quantified the added value of ECG to behind‐the‐ear EEG. METHODS: This study analyzed three multicenter databases consisting of 135 patients having focal epilepsy and a total of 896 seizures. A patient‐specific multimodal automated seizure detection algorithm was developed using behind‐the‐ear/temporal EEG and single‐lead ECG. The EEG and ECG data were processed separately using machine learning methods. A late integration approach was applied for fusing those predictions. RESULTS: The multimodal algorithm outperformed the EEG‐based algorithm in two of three databases, with an increase of 11% and 8% in sensitivity for the same false alarm rate. SIGNIFICANCE: ECG can be of added value to an EEG‐based seizure detection algorithm using only behind‐the‐ear/temporal lobe electrodes for patients with focal epilepsy. |
format | Online Article Text |
id | pubmed-8518059 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85180592021-10-21 The power of ECG in multimodal patient‐specific seizure monitoring: Added value to an EEG‐based detector using limited channels Vandecasteele, Kaat De Cooman, Thomas Chatzichristos, Christos Cleeren, Evy Swinnen, Lauren Macea Ortiz, Jaiver Van Huffel, Sabine Dümpelmann, Matthias Schulze‐Bonhage, Andreas De Vos, Maarten Van Paesschen, Wim Hunyadi, Borbála Epilepsia Full‐length Original Research OBJECTIVE: Wearable seizure detection devices could provide more reliable seizure documentation outside the hospital compared to seizure self‐reporting by patients, which is the current standard. Previously, during the SeizeIT1 project, we studied seizure detection based on behind‐the‐ear electroencephalography (EEG). However, the obtained sensitivities were too low for practical use, because not all seizures are associated with typical ictal EEG patterns. Therefore, in this paper, we aim to develop a multimodal automated seizure detection algorithm integrating behind‐the‐ear EEG and electrocardiography (ECG) for detecting focal seizures. In this framework, we quantified the added value of ECG to behind‐the‐ear EEG. METHODS: This study analyzed three multicenter databases consisting of 135 patients having focal epilepsy and a total of 896 seizures. A patient‐specific multimodal automated seizure detection algorithm was developed using behind‐the‐ear/temporal EEG and single‐lead ECG. The EEG and ECG data were processed separately using machine learning methods. A late integration approach was applied for fusing those predictions. RESULTS: The multimodal algorithm outperformed the EEG‐based algorithm in two of three databases, with an increase of 11% and 8% in sensitivity for the same false alarm rate. SIGNIFICANCE: ECG can be of added value to an EEG‐based seizure detection algorithm using only behind‐the‐ear/temporal lobe electrodes for patients with focal epilepsy. John Wiley and Sons Inc. 2021-07-09 2021-10 /pmc/articles/PMC8518059/ /pubmed/34240748 http://dx.doi.org/10.1111/epi.16990 Text en © 2021 The Authors. Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Full‐length Original Research Vandecasteele, Kaat De Cooman, Thomas Chatzichristos, Christos Cleeren, Evy Swinnen, Lauren Macea Ortiz, Jaiver Van Huffel, Sabine Dümpelmann, Matthias Schulze‐Bonhage, Andreas De Vos, Maarten Van Paesschen, Wim Hunyadi, Borbála The power of ECG in multimodal patient‐specific seizure monitoring: Added value to an EEG‐based detector using limited channels |
title | The power of ECG in multimodal patient‐specific seizure monitoring: Added value to an EEG‐based detector using limited channels |
title_full | The power of ECG in multimodal patient‐specific seizure monitoring: Added value to an EEG‐based detector using limited channels |
title_fullStr | The power of ECG in multimodal patient‐specific seizure monitoring: Added value to an EEG‐based detector using limited channels |
title_full_unstemmed | The power of ECG in multimodal patient‐specific seizure monitoring: Added value to an EEG‐based detector using limited channels |
title_short | The power of ECG in multimodal patient‐specific seizure monitoring: Added value to an EEG‐based detector using limited channels |
title_sort | power of ecg in multimodal patient‐specific seizure monitoring: added value to an eeg‐based detector using limited channels |
topic | Full‐length Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8518059/ https://www.ncbi.nlm.nih.gov/pubmed/34240748 http://dx.doi.org/10.1111/epi.16990 |
work_keys_str_mv | AT vandecasteelekaat thepowerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT decoomanthomas thepowerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT chatzichristoschristos thepowerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT cleerenevy thepowerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT swinnenlauren thepowerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT maceaortizjaiver thepowerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT vanhuffelsabine thepowerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT dumpelmannmatthias thepowerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT schulzebonhageandreas thepowerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT devosmaarten thepowerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT vanpaesschenwim thepowerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT hunyadiborbala thepowerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT vandecasteelekaat powerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT decoomanthomas powerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT chatzichristoschristos powerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT cleerenevy powerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT swinnenlauren powerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT maceaortizjaiver powerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT vanhuffelsabine powerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT dumpelmannmatthias powerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT schulzebonhageandreas powerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT devosmaarten powerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT vanpaesschenwim powerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels AT hunyadiborbala powerofecginmultimodalpatientspecificseizuremonitoringaddedvaluetoaneegbaseddetectorusinglimitedchannels |