Cargando…

Chitosan modulates Pochonia chlamydosporia gene expression during nematode egg parasitism

Climate change makes plant‐parasitic nematodes (PPN) an increasing threat to commercial crops. PPN can be managed sustainably by the biocontrol fungus Pochonia chlamydosporia (Pc). Chitosan generated from chitin deacetylation enhances PPN parasitism by Pc. In this work, we investigate the molecular...

Descripción completa

Detalles Bibliográficos
Autores principales: Suarez‐Fernandez, Marta, Sambles, Christine, Lopez‐Moya, Federico, Nueda, María J., Studholme, David J., Lopez‐Llorca, Luis Vicente
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8518118/
https://www.ncbi.nlm.nih.gov/pubmed/33496078
http://dx.doi.org/10.1111/1462-2920.15408
Descripción
Sumario:Climate change makes plant‐parasitic nematodes (PPN) an increasing threat to commercial crops. PPN can be managed sustainably by the biocontrol fungus Pochonia chlamydosporia (Pc). Chitosan generated from chitin deacetylation enhances PPN parasitism by Pc. In this work, we investigate the molecular mechanisms of Pc for chitosan resistance and root‐knot nematode (RKN) parasitism, using transcriptomics. Chitosan and RKN modify the expression of Pc genes, mainly those involved in oxidation–reduction processes. Both agents significantly modify the expression of genes associated to 113 GO terms and 180 Pc genes. Genes encoding putative glycoproteins (Pc adhesives) to nematode eggshell, as well as genes involved in redox, carbohydrate and lipid metabolism trigger the response to chitosan. We identify genes expressed in both the parasitic and endophytic phases of the Pc lifecycle; these include proteases, chitosanases and transcription factors. Using the Pathogen—Host Interaction database (PHI‐base), our previous RNA‐seq data and RT‐PCR of Pc colonizing banana we have investigated genes expressed both in the parasitic and endophytic phases of Pc lifecycle.