Cargando…

Transcriptome and de novo analysis of Rosa xanthina f. spontanea in response to cold stress

BACKGROUND: Rose is one of most popular ornamental plants worldwide and is of high economic value and great cultural importance. However, cold damage restricts its planting application in cold areas. To elucidate the metabolic response of rose under low temperature stress, we conducted transcriptome...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhuang, Defeng, Ma, Ce, Xue, Li, Li, Zhen, Wang, Cheng, Lei, Jiajun, Yuan, Xingfu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8518255/
https://www.ncbi.nlm.nih.gov/pubmed/34654360
http://dx.doi.org/10.1186/s12870-021-03246-5
Descripción
Sumario:BACKGROUND: Rose is one of most popular ornamental plants worldwide and is of high economic value and great cultural importance. However, cold damage restricts its planting application in cold areas. To elucidate the metabolic response of rose under low temperature stress, we conducted transcriptome and de novo analysis of Rosa xanthina f. spontanea. RESULTS: A total of 124,106 unigenes from 9 libraries were generated by de novo assembly, with N50 length was 1470 bp, under 4 °C and − 20 °C stress (23 °C was used as a control). Functional annotation and prediction analyses identified 55,084 unigenes, and 67.72% of these unigenes had significant similarity (BLAST, E ≤ 10(− 5)) to those in the public databases. A total of 3031 genes were upregulated and 3891 were downregulated at 4 °C compared with 23 °C, and 867 genes were upregulated and 1763 were downregulated at − 20 °C compared with 23 °C. A total of 468 common DEGs were detected under cold stress, and the matched DEGs were involved in three functional categories: biological process (58.45%), cellular component (11.27%) and molecular function (30.28%). Based on KEGG functional annotations, four pathways were significantly enriched: metabolic pathway, response to plant pathogen interaction (32 genes); starch and sucrose metabolism (21 genes); circadian rhythm plant (8 genes); and photosynthesis antenna proteins (7 genes). CONCLUSIONS: Our study is the first to report the response to cold stress at the transcriptome level in R. xanthina f. spontanea. The results can help to elucidate the molecular mechanism of cold resistance in rose and provide new insights and candidate genes for genetically enhancing cold stress tolerance. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-021-03246-5.