Cargando…
Evaluation of deep learning-based autosegmentation in breast cancer radiotherapy
PURPOSE: To study the performance of a proposed deep learning-based autocontouring system in delineating organs at risk (OARs) in breast radiotherapy with a group of experts. METHODS: Eleven experts from two institutions delineated nine OARs in 10 cases of adjuvant radiotherapy after breast-conservi...
Autores principales: | Byun, Hwa Kyung, Chang, Jee Suk, Choi, Min Seo, Chun, Jaehee, Jung, Jinhong, Jeong, Chiyoung, Kim, Jin Sung, Chang, Yongjin, Chung, Seung Yeun, Lee, Seungryul, Kim, Yong Bae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8518257/ https://www.ncbi.nlm.nih.gov/pubmed/34649569 http://dx.doi.org/10.1186/s13014-021-01923-1 |
Ejemplares similares
-
Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery
por: Chung, Seung Yeun, et al.
Publicado: (2021) -
Comprehensive clinical evaluation of deep learning-based auto-segmentation for radiotherapy in patients with cervical cancer
por: Chung, Seung Yeun, et al.
Publicado: (2023) -
Clinical application and improvement of a CNN‐based autosegmentation model for clinical target volumes in cervical cancer radiotherapy
por: Chang, Yankui, et al.
Publicado: (2021) -
Autosegmentation of the rectum on megavoltage image guidance scans
por: Shelley, L E A, et al.
Publicado: (2019) -
An attention base U-net for parotid tumor autosegmentation
por: Xia, Xianwu, et al.
Publicado: (2022)