Cargando…

Multi-channel lung sounds intelligent diagnosis of chronic obstructive pulmonary disease

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that seriously threatens people’s health, with high morbidity and mortality worldwide. At present, the clinical diagnosis methods of COPD are time-consuming, invasive, and radioactive. Therefore, it is urgent t...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Hui, Zhao, Jing, Liu, Dongyi, Chen, Zhen, Sun, Jinglai, Zhao, Xiaoyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8518292/
https://www.ncbi.nlm.nih.gov/pubmed/34654400
http://dx.doi.org/10.1186/s12890-021-01682-5
Descripción
Sumario:BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that seriously threatens people’s health, with high morbidity and mortality worldwide. At present, the clinical diagnosis methods of COPD are time-consuming, invasive, and radioactive. Therefore, it is urgent to develop a non-invasive and rapid COPD severity diagnosis technique suitable for daily screening in clinical practice. RESULTS: This study established an effective model for the preliminary diagnosis of COPD severity using lung sounds with few channels. Firstly, the time-frequency-energy features of 12 channels lung sounds were extracted by Hilbert–Huang transform. And then, channels and features were screened by the reliefF algorithm. Finally, the feature sets were input into a support vector machine to diagnose COPD severity, and the performance with Bayes, decision tree, and deep belief network was compared. Experimental results show that high classification performance using only 4-channel lung sounds of L1, L2, L3, and L4 channels can be achieved by the proposed model. The accuracy, sensitivity, and specificity of mild COPD and moderate + severe COPD were 89.13%, 87.72%, and 91.01%, respectively. The classification performance rates of moderate COPD and severe COPD were 94.26%, 97.32%, and 89.93% for accuracy, sensitivity, and specificity, respectively. CONCLUSION: This model provides a standardized evaluation with high classification performance rates, which can assist doctors to complete the preliminary diagnosis of COPD severity immediately, and has important clinical significance.