Cargando…
Versatile 3D‐Printed Micro‐Reference Electrodes for Aqueous and Non‐Aqueous Solutions
While numerous reference electrodes suitable for aqueous electrolytes exist, there is no well‐defined standard for non‐aqueous electrolytes. Furthermore, reference electrodes are often large and do not meet the size requirements for small cells. In this work, we present a simple method for fabricati...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8518549/ https://www.ncbi.nlm.nih.gov/pubmed/34427031 http://dx.doi.org/10.1002/anie.202105871 |
Sumario: | While numerous reference electrodes suitable for aqueous electrolytes exist, there is no well‐defined standard for non‐aqueous electrolytes. Furthermore, reference electrodes are often large and do not meet the size requirements for small cells. In this work, we present a simple method for fabricating stable 3D‐printed micro‐reference electrodes. The prints are made from polyvinylidene fluoride, which is chemically inert in strong acids, bases, and commonly used non‐aqueous solvents. We chose six different reference systems based on Ag, Cu, Zn, and Na, including three aqueous and three non‐aqueous systems to demonstrate the versatility of the approach. Subsequently, we conducted cyclic voltammetry experiments and measured the potential difference between the aqueous homemade reference electrodes and a commercial Ag/AgCl‐electrode. For the non‐aqueous reference electrodes, we chose the ferrocene redox couple as an internal standard. From these measurements, we deduced that this new class of micro‐reference electrodes is leak‐tight and shows a stable electrode potential. |
---|