Cargando…

Predicting the potential of capacitive deionization for the separation of pH‐dependent organic molecules

One of the main steps in the biotechnological production of chemical building blocks, such as, e.g. bio‐based succinic acid which is used for lubricants, cosmetics, food, and pharmaceuticals, is the isolation and purification of the target molecule. A new approach to isolate charged, bio‐based chemi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wagner, Robin, Winger, Sebastian, Franzreb, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8518579/
https://www.ncbi.nlm.nih.gov/pubmed/34690631
http://dx.doi.org/10.1002/elsc.202100037
Descripción
Sumario:One of the main steps in the biotechnological production of chemical building blocks, such as, e.g. bio‐based succinic acid which is used for lubricants, cosmetics, food, and pharmaceuticals, is the isolation and purification of the target molecule. A new approach to isolate charged, bio‐based chemicals is by electrosorption onto carbon surfaces. In contrast to ion exchange, electrosorption does not require additional chemicals for elution and regeneration. However, while the electrosorption of inorganic salts is well understood and in commercial use, the knowledge about electrosorption of weak organic acids including the strong implications of the pH‐dependent dissociation and their affinity towards physical adsorption must be expanded. Here, we show a detailed discussion of the main pH‐dependent effects determining the achievable charge efficiencies and capacities. An explicit set of equations allows the fast prediction of the named key figures for constant voltage and constant current operation. The calculated and experimental results obtained for the electrosorption of maleic acid show that the potential‐free adsorption of differently protonated forms of the organic acid play a dominating role in the process. At pH 8 and a voltage threshold of 1.3 V, charge efficiencies of 25% and capacities around 40 mmol/kg could be reached for a constant current experiment. While this capacity is clearly below that of ion exchange resins, the required carbon materials are inexpensive and energy costs are only about 0.013 €/mol. Therefore, we anticipate that electrosorption has the potential to become an interesting alternative to conventional unit operations for the isolation of charged target molecules.