Cargando…

The Coordinate Reaction Model: An Obstacle to Interpreting the Emergence of Chemical Complexity

The way chemical transformations are described by models based on microscopic reversibility does not take into account the irreversibility of natural processes, and therefore, in complex chemical networks working in open systems, misunderstandings may arise about the origin and causes of the stabili...

Descripción completa

Detalles Bibliográficos
Autores principales: Ribó, Josep M., Hochberg, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8518807/
https://www.ncbi.nlm.nih.gov/pubmed/34259350
http://dx.doi.org/10.1002/chem.202101562
Descripción
Sumario:The way chemical transformations are described by models based on microscopic reversibility does not take into account the irreversibility of natural processes, and therefore, in complex chemical networks working in open systems, misunderstandings may arise about the origin and causes of the stability of non‐equilibrium stationary states, and general constraints on evolution in systems that are far from equilibrium. In order to be correctly simulated and understood, the chemical behavior of complex systems requires time‐dependent models, otherwise the irreversibility of natural phenomena is overlooked. Micro reversible models based on the reaction‐coordinate model are time invariant and are therefore unable to explain the evolution of open dissipative systems. The important points necessary for improving the modeling and simulations of complex chemical systems are: a) understanding the physical potential related to the entropy production rate, which is in general an inexact differential of a state function, and b) the interpretation and application of the so‐called general evolution criterion (GEC), which is the general thermodynamic constraint for the evolution of dissipative chemical systems.