Cargando…

Bioelectrocatalytic Cofactor Regeneration Coupled to CO(2) Fixation in a Redox‐Active Hydrogel for Stereoselective C−C Bond Formation

The sustainable capture and conversion of carbon dioxide (CO(2)) is key to achieving a circular carbon economy. Bioelectrocatalysis, which aims at using renewable energies to power the highly specific, direct transformation of CO(2) into value added products, holds promise to achieve this goal. Howe...

Descripción completa

Detalles Bibliográficos
Autores principales: Castañeda‐Losada, Leonardo, Adam, David, Paczia, Nicole, Buesen, Darren, Steffler, Fabian, Sieber, Volker, Erb, Tobias J., Richter, Michael, Plumeré, Nicolas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8518881/
https://www.ncbi.nlm.nih.gov/pubmed/34081832
http://dx.doi.org/10.1002/anie.202103634
_version_ 1784584330731847680
author Castañeda‐Losada, Leonardo
Adam, David
Paczia, Nicole
Buesen, Darren
Steffler, Fabian
Sieber, Volker
Erb, Tobias J.
Richter, Michael
Plumeré, Nicolas
author_facet Castañeda‐Losada, Leonardo
Adam, David
Paczia, Nicole
Buesen, Darren
Steffler, Fabian
Sieber, Volker
Erb, Tobias J.
Richter, Michael
Plumeré, Nicolas
author_sort Castañeda‐Losada, Leonardo
collection PubMed
description The sustainable capture and conversion of carbon dioxide (CO(2)) is key to achieving a circular carbon economy. Bioelectrocatalysis, which aims at using renewable energies to power the highly specific, direct transformation of CO(2) into value added products, holds promise to achieve this goal. However, the functional integration of CO(2)‐fixing enzymes onto electrode materials for the electrosynthesis of stereochemically complex molecules remains to be demonstrated. Here, we show the electricity‐driven regio‐ and stereoselective incorporation of CO(2) into crotonyl‐CoA by an NADPH‐dependent enzymatic reductive carboxylation. Co‐immobilization of a ferredoxin NADP(+) reductase and crotonyl‐CoA carboxylase/reductase within a 2,2′‐viologen‐modified hydrogel enabled iterative NADPH recycling and stereoselective formation of (2S)‐ethylmalonyl‐CoA, a prospective intermediate towards multi‐carbon products from CO(2), with 92±6 % faradaic efficiency and at a rate of 1.6±0.4 μmol cm(−2) h(−1). This approach paves the way for realizing even more complex bioelectrocatalyic cascades in the future.
format Online
Article
Text
id pubmed-8518881
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-85188812021-10-21 Bioelectrocatalytic Cofactor Regeneration Coupled to CO(2) Fixation in a Redox‐Active Hydrogel for Stereoselective C−C Bond Formation Castañeda‐Losada, Leonardo Adam, David Paczia, Nicole Buesen, Darren Steffler, Fabian Sieber, Volker Erb, Tobias J. Richter, Michael Plumeré, Nicolas Angew Chem Int Ed Engl Research Articles The sustainable capture and conversion of carbon dioxide (CO(2)) is key to achieving a circular carbon economy. Bioelectrocatalysis, which aims at using renewable energies to power the highly specific, direct transformation of CO(2) into value added products, holds promise to achieve this goal. However, the functional integration of CO(2)‐fixing enzymes onto electrode materials for the electrosynthesis of stereochemically complex molecules remains to be demonstrated. Here, we show the electricity‐driven regio‐ and stereoselective incorporation of CO(2) into crotonyl‐CoA by an NADPH‐dependent enzymatic reductive carboxylation. Co‐immobilization of a ferredoxin NADP(+) reductase and crotonyl‐CoA carboxylase/reductase within a 2,2′‐viologen‐modified hydrogel enabled iterative NADPH recycling and stereoselective formation of (2S)‐ethylmalonyl‐CoA, a prospective intermediate towards multi‐carbon products from CO(2), with 92±6 % faradaic efficiency and at a rate of 1.6±0.4 μmol cm(−2) h(−1). This approach paves the way for realizing even more complex bioelectrocatalyic cascades in the future. John Wiley and Sons Inc. 2021-07-07 2021-09-13 /pmc/articles/PMC8518881/ /pubmed/34081832 http://dx.doi.org/10.1002/anie.202103634 Text en © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research Articles
Castañeda‐Losada, Leonardo
Adam, David
Paczia, Nicole
Buesen, Darren
Steffler, Fabian
Sieber, Volker
Erb, Tobias J.
Richter, Michael
Plumeré, Nicolas
Bioelectrocatalytic Cofactor Regeneration Coupled to CO(2) Fixation in a Redox‐Active Hydrogel for Stereoselective C−C Bond Formation
title Bioelectrocatalytic Cofactor Regeneration Coupled to CO(2) Fixation in a Redox‐Active Hydrogel for Stereoselective C−C Bond Formation
title_full Bioelectrocatalytic Cofactor Regeneration Coupled to CO(2) Fixation in a Redox‐Active Hydrogel for Stereoselective C−C Bond Formation
title_fullStr Bioelectrocatalytic Cofactor Regeneration Coupled to CO(2) Fixation in a Redox‐Active Hydrogel for Stereoselective C−C Bond Formation
title_full_unstemmed Bioelectrocatalytic Cofactor Regeneration Coupled to CO(2) Fixation in a Redox‐Active Hydrogel for Stereoselective C−C Bond Formation
title_short Bioelectrocatalytic Cofactor Regeneration Coupled to CO(2) Fixation in a Redox‐Active Hydrogel for Stereoselective C−C Bond Formation
title_sort bioelectrocatalytic cofactor regeneration coupled to co(2) fixation in a redox‐active hydrogel for stereoselective c−c bond formation
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8518881/
https://www.ncbi.nlm.nih.gov/pubmed/34081832
http://dx.doi.org/10.1002/anie.202103634
work_keys_str_mv AT castanedalosadaleonardo bioelectrocatalyticcofactorregenerationcoupledtoco2fixationinaredoxactivehydrogelforstereoselectiveccbondformation
AT adamdavid bioelectrocatalyticcofactorregenerationcoupledtoco2fixationinaredoxactivehydrogelforstereoselectiveccbondformation
AT paczianicole bioelectrocatalyticcofactorregenerationcoupledtoco2fixationinaredoxactivehydrogelforstereoselectiveccbondformation
AT buesendarren bioelectrocatalyticcofactorregenerationcoupledtoco2fixationinaredoxactivehydrogelforstereoselectiveccbondformation
AT stefflerfabian bioelectrocatalyticcofactorregenerationcoupledtoco2fixationinaredoxactivehydrogelforstereoselectiveccbondformation
AT siebervolker bioelectrocatalyticcofactorregenerationcoupledtoco2fixationinaredoxactivehydrogelforstereoselectiveccbondformation
AT erbtobiasj bioelectrocatalyticcofactorregenerationcoupledtoco2fixationinaredoxactivehydrogelforstereoselectiveccbondformation
AT richtermichael bioelectrocatalyticcofactorregenerationcoupledtoco2fixationinaredoxactivehydrogelforstereoselectiveccbondformation
AT plumerenicolas bioelectrocatalyticcofactorregenerationcoupledtoco2fixationinaredoxactivehydrogelforstereoselectiveccbondformation