Cargando…
Using Light to Modify the Selectivity of Transition Metal Catalysed Transformations
Light has a remarkable and often unique ability to promote chemical reactions. In combination with transition metal catalysis, it offers exciting opportunities to modify catalyst function in a non‐invasive manner, most frequently being reported to switch on or accelerate reactions that do not occur...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519094/ https://www.ncbi.nlm.nih.gov/pubmed/34043248 http://dx.doi.org/10.1002/anie.202105043 |
Sumario: | Light has a remarkable and often unique ability to promote chemical reactions. In combination with transition metal catalysis, it offers exciting opportunities to modify catalyst function in a non‐invasive manner, most frequently being reported to switch on or accelerate reactions that do not occur in the dark. However, the ability to completely change reactivity or selectivity between two different reaction outcomes is considerably less common. In this Minireview we bring together examples of this concept and highlight their mechanistically distinct approaches. Our overview demonstrates how these non‐natural, photo‐switchable systems provide key fundamental mechanistic insights, enhancing our understanding and stimulating development of new catalytic activity, and how this might lead to tangible applications, impacting fields such as polymer chemistry. |
---|