Cargando…

A retrospective in‐depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: Recommended outcome parameters for glucose management

Continuous glucose monitoring (CGM) systems have great potential for real‐time assessment of glycemic variation in patients with hepatic glycogen storage disease (GSD). However, detailed descriptions and in‐depth analysis of CGM data from hepatic GSD patients during interventions are scarce. This is...

Descripción completa

Detalles Bibliográficos
Autores principales: Peeks, Fabian, Hoogeveen, Irene J., Feldbrugge, R. Lude, Burghard, Rob, de Boer, Foekje, Fokkert‐Wilts, Marieke J., van der Klauw, Melanie M., Oosterveer, Maaike H., Derks, Terry G. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519135/
https://www.ncbi.nlm.nih.gov/pubmed/33834518
http://dx.doi.org/10.1002/jimd.12383
_version_ 1784584388817715200
author Peeks, Fabian
Hoogeveen, Irene J.
Feldbrugge, R. Lude
Burghard, Rob
de Boer, Foekje
Fokkert‐Wilts, Marieke J.
van der Klauw, Melanie M.
Oosterveer, Maaike H.
Derks, Terry G. J.
author_facet Peeks, Fabian
Hoogeveen, Irene J.
Feldbrugge, R. Lude
Burghard, Rob
de Boer, Foekje
Fokkert‐Wilts, Marieke J.
van der Klauw, Melanie M.
Oosterveer, Maaike H.
Derks, Terry G. J.
author_sort Peeks, Fabian
collection PubMed
description Continuous glucose monitoring (CGM) systems have great potential for real‐time assessment of glycemic variation in patients with hepatic glycogen storage disease (GSD). However, detailed descriptions and in‐depth analysis of CGM data from hepatic GSD patients during interventions are scarce. This is a retrospective in‐depth analysis of CGM parameters, acquired in a continuous, real‐time fashion describing glucose management in 15 individual GSD patients. CGM subsets are obtained both in‐hospital and at home, upon nocturnal dietary intervention (n = 1), starch loads (n = 11) and treatment of GSD Ib patients with empagliflozin (n = 3). Descriptive CGM parameters, and parameters reflecting glycemic variation and glycemic control are considered useful CGM outcome parameters. Furthermore, the combination of first and second order derivatives, cumulative sum and Fourier analysis identified both subtle and sudden changes in glucose management; hence, aiding assessment of dietary and medical interventions. CGM data interpolation for nocturnal intervals reduced confounding by physical activity and diet. Based on these analyses, we conclude that in‐depth CGM analysis can be a powerful tool to assess glucose management and optimize treatment in individual hepatic GSD patients.
format Online
Article
Text
id pubmed-8519135
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-85191352021-10-22 A retrospective in‐depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: Recommended outcome parameters for glucose management Peeks, Fabian Hoogeveen, Irene J. Feldbrugge, R. Lude Burghard, Rob de Boer, Foekje Fokkert‐Wilts, Marieke J. van der Klauw, Melanie M. Oosterveer, Maaike H. Derks, Terry G. J. J Inherit Metab Dis Original Articles Continuous glucose monitoring (CGM) systems have great potential for real‐time assessment of glycemic variation in patients with hepatic glycogen storage disease (GSD). However, detailed descriptions and in‐depth analysis of CGM data from hepatic GSD patients during interventions are scarce. This is a retrospective in‐depth analysis of CGM parameters, acquired in a continuous, real‐time fashion describing glucose management in 15 individual GSD patients. CGM subsets are obtained both in‐hospital and at home, upon nocturnal dietary intervention (n = 1), starch loads (n = 11) and treatment of GSD Ib patients with empagliflozin (n = 3). Descriptive CGM parameters, and parameters reflecting glycemic variation and glycemic control are considered useful CGM outcome parameters. Furthermore, the combination of first and second order derivatives, cumulative sum and Fourier analysis identified both subtle and sudden changes in glucose management; hence, aiding assessment of dietary and medical interventions. CGM data interpolation for nocturnal intervals reduced confounding by physical activity and diet. Based on these analyses, we conclude that in‐depth CGM analysis can be a powerful tool to assess glucose management and optimize treatment in individual hepatic GSD patients. John Wiley & Sons, Inc. 2021-05-05 2021-09 /pmc/articles/PMC8519135/ /pubmed/33834518 http://dx.doi.org/10.1002/jimd.12383 Text en © 2021 The Authors. Journal of Inherited Metabolic Disease published by John Wiley & Sons Ltd on behalf of SSIEM. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Peeks, Fabian
Hoogeveen, Irene J.
Feldbrugge, R. Lude
Burghard, Rob
de Boer, Foekje
Fokkert‐Wilts, Marieke J.
van der Klauw, Melanie M.
Oosterveer, Maaike H.
Derks, Terry G. J.
A retrospective in‐depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: Recommended outcome parameters for glucose management
title A retrospective in‐depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: Recommended outcome parameters for glucose management
title_full A retrospective in‐depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: Recommended outcome parameters for glucose management
title_fullStr A retrospective in‐depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: Recommended outcome parameters for glucose management
title_full_unstemmed A retrospective in‐depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: Recommended outcome parameters for glucose management
title_short A retrospective in‐depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: Recommended outcome parameters for glucose management
title_sort retrospective in‐depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: recommended outcome parameters for glucose management
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519135/
https://www.ncbi.nlm.nih.gov/pubmed/33834518
http://dx.doi.org/10.1002/jimd.12383
work_keys_str_mv AT peeksfabian aretrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement
AT hoogeveenirenej aretrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement
AT feldbruggerlude aretrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement
AT burghardrob aretrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement
AT deboerfoekje aretrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement
AT fokkertwiltsmariekej aretrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement
AT vanderklauwmelaniem aretrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement
AT oosterveermaaikeh aretrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement
AT derksterrygj aretrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement
AT peeksfabian retrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement
AT hoogeveenirenej retrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement
AT feldbruggerlude retrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement
AT burghardrob retrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement
AT deboerfoekje retrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement
AT fokkertwiltsmariekej retrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement
AT vanderklauwmelaniem retrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement
AT oosterveermaaikeh retrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement
AT derksterrygj retrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement