Cargando…
A retrospective in‐depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: Recommended outcome parameters for glucose management
Continuous glucose monitoring (CGM) systems have great potential for real‐time assessment of glycemic variation in patients with hepatic glycogen storage disease (GSD). However, detailed descriptions and in‐depth analysis of CGM data from hepatic GSD patients during interventions are scarce. This is...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519135/ https://www.ncbi.nlm.nih.gov/pubmed/33834518 http://dx.doi.org/10.1002/jimd.12383 |
_version_ | 1784584388817715200 |
---|---|
author | Peeks, Fabian Hoogeveen, Irene J. Feldbrugge, R. Lude Burghard, Rob de Boer, Foekje Fokkert‐Wilts, Marieke J. van der Klauw, Melanie M. Oosterveer, Maaike H. Derks, Terry G. J. |
author_facet | Peeks, Fabian Hoogeveen, Irene J. Feldbrugge, R. Lude Burghard, Rob de Boer, Foekje Fokkert‐Wilts, Marieke J. van der Klauw, Melanie M. Oosterveer, Maaike H. Derks, Terry G. J. |
author_sort | Peeks, Fabian |
collection | PubMed |
description | Continuous glucose monitoring (CGM) systems have great potential for real‐time assessment of glycemic variation in patients with hepatic glycogen storage disease (GSD). However, detailed descriptions and in‐depth analysis of CGM data from hepatic GSD patients during interventions are scarce. This is a retrospective in‐depth analysis of CGM parameters, acquired in a continuous, real‐time fashion describing glucose management in 15 individual GSD patients. CGM subsets are obtained both in‐hospital and at home, upon nocturnal dietary intervention (n = 1), starch loads (n = 11) and treatment of GSD Ib patients with empagliflozin (n = 3). Descriptive CGM parameters, and parameters reflecting glycemic variation and glycemic control are considered useful CGM outcome parameters. Furthermore, the combination of first and second order derivatives, cumulative sum and Fourier analysis identified both subtle and sudden changes in glucose management; hence, aiding assessment of dietary and medical interventions. CGM data interpolation for nocturnal intervals reduced confounding by physical activity and diet. Based on these analyses, we conclude that in‐depth CGM analysis can be a powerful tool to assess glucose management and optimize treatment in individual hepatic GSD patients. |
format | Online Article Text |
id | pubmed-8519135 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85191352021-10-22 A retrospective in‐depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: Recommended outcome parameters for glucose management Peeks, Fabian Hoogeveen, Irene J. Feldbrugge, R. Lude Burghard, Rob de Boer, Foekje Fokkert‐Wilts, Marieke J. van der Klauw, Melanie M. Oosterveer, Maaike H. Derks, Terry G. J. J Inherit Metab Dis Original Articles Continuous glucose monitoring (CGM) systems have great potential for real‐time assessment of glycemic variation in patients with hepatic glycogen storage disease (GSD). However, detailed descriptions and in‐depth analysis of CGM data from hepatic GSD patients during interventions are scarce. This is a retrospective in‐depth analysis of CGM parameters, acquired in a continuous, real‐time fashion describing glucose management in 15 individual GSD patients. CGM subsets are obtained both in‐hospital and at home, upon nocturnal dietary intervention (n = 1), starch loads (n = 11) and treatment of GSD Ib patients with empagliflozin (n = 3). Descriptive CGM parameters, and parameters reflecting glycemic variation and glycemic control are considered useful CGM outcome parameters. Furthermore, the combination of first and second order derivatives, cumulative sum and Fourier analysis identified both subtle and sudden changes in glucose management; hence, aiding assessment of dietary and medical interventions. CGM data interpolation for nocturnal intervals reduced confounding by physical activity and diet. Based on these analyses, we conclude that in‐depth CGM analysis can be a powerful tool to assess glucose management and optimize treatment in individual hepatic GSD patients. John Wiley & Sons, Inc. 2021-05-05 2021-09 /pmc/articles/PMC8519135/ /pubmed/33834518 http://dx.doi.org/10.1002/jimd.12383 Text en © 2021 The Authors. Journal of Inherited Metabolic Disease published by John Wiley & Sons Ltd on behalf of SSIEM. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Peeks, Fabian Hoogeveen, Irene J. Feldbrugge, R. Lude Burghard, Rob de Boer, Foekje Fokkert‐Wilts, Marieke J. van der Klauw, Melanie M. Oosterveer, Maaike H. Derks, Terry G. J. A retrospective in‐depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: Recommended outcome parameters for glucose management |
title | A retrospective in‐depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: Recommended outcome parameters for glucose management |
title_full | A retrospective in‐depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: Recommended outcome parameters for glucose management |
title_fullStr | A retrospective in‐depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: Recommended outcome parameters for glucose management |
title_full_unstemmed | A retrospective in‐depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: Recommended outcome parameters for glucose management |
title_short | A retrospective in‐depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: Recommended outcome parameters for glucose management |
title_sort | retrospective in‐depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: recommended outcome parameters for glucose management |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519135/ https://www.ncbi.nlm.nih.gov/pubmed/33834518 http://dx.doi.org/10.1002/jimd.12383 |
work_keys_str_mv | AT peeksfabian aretrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement AT hoogeveenirenej aretrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement AT feldbruggerlude aretrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement AT burghardrob aretrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement AT deboerfoekje aretrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement AT fokkertwiltsmariekej aretrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement AT vanderklauwmelaniem aretrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement AT oosterveermaaikeh aretrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement AT derksterrygj aretrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement AT peeksfabian retrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement AT hoogeveenirenej retrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement AT feldbruggerlude retrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement AT burghardrob retrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement AT deboerfoekje retrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement AT fokkertwiltsmariekej retrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement AT vanderklauwmelaniem retrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement AT oosterveermaaikeh retrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement AT derksterrygj retrospectiveindepthanalysisofcontinuousglucosemonitoringdatasetsforpatientswithhepaticglycogenstoragediseaserecommendedoutcomeparametersforglucosemanagement |