Cargando…
Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks
Biomedical and life science literature is an essential way to publish experimental results. With the rapid growth of the number of new publications, the amount of scientific knowledge represented in free text is increasing remarkably. There has been much interest in developing techniques that can ex...
Autores principales: | Alachram, Halima, Chereda, Hryhorii, Beißbarth, Tim, Wingender, Edgar, Stegmaier, Philip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519453/ https://www.ncbi.nlm.nih.gov/pubmed/34653224 http://dx.doi.org/10.1371/journal.pone.0258623 |
Ejemplares similares
-
Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer
por: Chereda, Hryhorii, et al.
Publicado: (2021) -
NERO: a biomedical named-entity (recognition) ontology with a large, annotated corpus reveals meaningful associations through text embedding
por: Wang, Kanix, et al.
Publicado: (2021) -
Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks
por: Tang, Buzhou, et al.
Publicado: (2014) -
BioBERT: a pre-trained biomedical language representation model for biomedical text mining
por: Lee, Jinhyuk, et al.
Publicado: (2020) -
A text mining approach to detect mentions of protein glycosylation in biomedical text
por: Shukla, Daksha, et al.
Publicado: (2012)