Cargando…
Spectral tuning and deactivation kinetics of marine mammal melanopsins
In mammals, the photopigment melanopsin (Opn4) is found in a subset of retinal ganglion cells that serve light detection for circadian photoentrainment and pupil constriction (i.e., mydriasis). For a given species, the efficiency of photoentrainment and length of time that mydriasis occurs is determ...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519484/ https://www.ncbi.nlm.nih.gov/pubmed/34653198 http://dx.doi.org/10.1371/journal.pone.0257436 |
_version_ | 1784584460006588416 |
---|---|
author | Fasick, Jeffry I. Algrain, Haya Samuels, Courtland Mahadevan, Padmanabhan Schweikert, Lorian E. Naffaa, Zaid J. Robinson, Phyllis R. |
author_facet | Fasick, Jeffry I. Algrain, Haya Samuels, Courtland Mahadevan, Padmanabhan Schweikert, Lorian E. Naffaa, Zaid J. Robinson, Phyllis R. |
author_sort | Fasick, Jeffry I. |
collection | PubMed |
description | In mammals, the photopigment melanopsin (Opn4) is found in a subset of retinal ganglion cells that serve light detection for circadian photoentrainment and pupil constriction (i.e., mydriasis). For a given species, the efficiency of photoentrainment and length of time that mydriasis occurs is determined by the spectral sensitivity and deactivation kinetics of melanopsin, respectively, and to date, neither of these properties have been described in marine mammals. Previous work has indicated that the absorbance maxima (λ(max)) of marine mammal rhodopsins (Rh1) have diversified to match the available light spectra at foraging depths. However, similar to the melanopsin λ(max) of terrestrial mammals (~480 nm), the melanopsins of marine mammals may be conserved, with λ(max) values tuned to the spectrum of solar irradiance at the water’s surface. Here, we investigated the Opn4 pigments of 17 marine mammal species inhabiting diverse photic environments including the Infraorder Cetacea, as well as the Orders Sirenia and Carnivora. Both genomic and cDNA sequences were used to deduce amino acid sequences to identify substitutions most likely involved in spectral tuning and deactivation kinetics of the Opn4 pigments. Our results show that there appears to be no amino acid substitutions in marine mammal Opn4 opsins that would result in any significant change in λ(max) values relative to their terrestrial counterparts. We also found some marine mammal species to lack several phosphorylation sites in the carboxyl terminal domain of their Opn4 pigments that result in significantly slower deactivation kinetics, and thus longer mydriasis, compared to terrestrial controls. This finding was restricted to cetacean species previously found to lack cone photoreceptor opsins, a condition known as rod monochromacy. These results suggest that the rod monochromat whales rely on extended pupillary constriction to prevent photobleaching of the highly photosensitive all-rod retina when moving between photopic and scotopic conditions. |
format | Online Article Text |
id | pubmed-8519484 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-85194842021-10-16 Spectral tuning and deactivation kinetics of marine mammal melanopsins Fasick, Jeffry I. Algrain, Haya Samuels, Courtland Mahadevan, Padmanabhan Schweikert, Lorian E. Naffaa, Zaid J. Robinson, Phyllis R. PLoS One Research Article In mammals, the photopigment melanopsin (Opn4) is found in a subset of retinal ganglion cells that serve light detection for circadian photoentrainment and pupil constriction (i.e., mydriasis). For a given species, the efficiency of photoentrainment and length of time that mydriasis occurs is determined by the spectral sensitivity and deactivation kinetics of melanopsin, respectively, and to date, neither of these properties have been described in marine mammals. Previous work has indicated that the absorbance maxima (λ(max)) of marine mammal rhodopsins (Rh1) have diversified to match the available light spectra at foraging depths. However, similar to the melanopsin λ(max) of terrestrial mammals (~480 nm), the melanopsins of marine mammals may be conserved, with λ(max) values tuned to the spectrum of solar irradiance at the water’s surface. Here, we investigated the Opn4 pigments of 17 marine mammal species inhabiting diverse photic environments including the Infraorder Cetacea, as well as the Orders Sirenia and Carnivora. Both genomic and cDNA sequences were used to deduce amino acid sequences to identify substitutions most likely involved in spectral tuning and deactivation kinetics of the Opn4 pigments. Our results show that there appears to be no amino acid substitutions in marine mammal Opn4 opsins that would result in any significant change in λ(max) values relative to their terrestrial counterparts. We also found some marine mammal species to lack several phosphorylation sites in the carboxyl terminal domain of their Opn4 pigments that result in significantly slower deactivation kinetics, and thus longer mydriasis, compared to terrestrial controls. This finding was restricted to cetacean species previously found to lack cone photoreceptor opsins, a condition known as rod monochromacy. These results suggest that the rod monochromat whales rely on extended pupillary constriction to prevent photobleaching of the highly photosensitive all-rod retina when moving between photopic and scotopic conditions. Public Library of Science 2021-10-15 /pmc/articles/PMC8519484/ /pubmed/34653198 http://dx.doi.org/10.1371/journal.pone.0257436 Text en © 2021 Fasick et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Fasick, Jeffry I. Algrain, Haya Samuels, Courtland Mahadevan, Padmanabhan Schweikert, Lorian E. Naffaa, Zaid J. Robinson, Phyllis R. Spectral tuning and deactivation kinetics of marine mammal melanopsins |
title | Spectral tuning and deactivation kinetics of marine mammal melanopsins |
title_full | Spectral tuning and deactivation kinetics of marine mammal melanopsins |
title_fullStr | Spectral tuning and deactivation kinetics of marine mammal melanopsins |
title_full_unstemmed | Spectral tuning and deactivation kinetics of marine mammal melanopsins |
title_short | Spectral tuning and deactivation kinetics of marine mammal melanopsins |
title_sort | spectral tuning and deactivation kinetics of marine mammal melanopsins |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519484/ https://www.ncbi.nlm.nih.gov/pubmed/34653198 http://dx.doi.org/10.1371/journal.pone.0257436 |
work_keys_str_mv | AT fasickjeffryi spectraltuninganddeactivationkineticsofmarinemammalmelanopsins AT algrainhaya spectraltuninganddeactivationkineticsofmarinemammalmelanopsins AT samuelscourtland spectraltuninganddeactivationkineticsofmarinemammalmelanopsins AT mahadevanpadmanabhan spectraltuninganddeactivationkineticsofmarinemammalmelanopsins AT schweikertloriane spectraltuninganddeactivationkineticsofmarinemammalmelanopsins AT naffaazaidj spectraltuninganddeactivationkineticsofmarinemammalmelanopsins AT robinsonphyllisr spectraltuninganddeactivationkineticsofmarinemammalmelanopsins |