Cargando…
Presenting artificial intelligence, deep learning, and machine learning studies to clinicians and healthcare stakeholders: an introductory reference with a guideline and a Clinical AI Research (CAIR) checklist proposal
Background and purpose — Artificial intelligence (AI), deep learning (DL), and machine learning (ML) have become common research fields in orthopedics and medicine in general. Engineers perform much of the work. While they gear the results towards healthcare professionals, the difference in competen...
Autores principales: | Olczak, Jakub, Pavlopoulos, John, Prijs, Jasper, Ijpma, Frank F A, Doornberg, Job N, Lundström, Claes, Hedlund, Joel, Gordon, Max |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519529/ https://www.ncbi.nlm.nih.gov/pubmed/33988081 http://dx.doi.org/10.1080/17453674.2021.1918389 |
Ejemplares similares
-
An increasing number of convolutional neural networks for fracture recognition and classification in orthopaedics: are these externally validated and ready for clinical application?
por: Oliveira e Carmo, Luisa, et al.
Publicado: (2021) -
Du caire á Jérusalem
por: Pully, Henry de
Publicado: (1911) -
Development and external validation of automated detection, classification, and localization of ankle fractures: inside the black box of a convolutional neural network (CNN)
por: Prijs, Jasper, et al.
Publicado: (2022) -
3D virtual pre-operative planning may reduce the incidence of dorsal screw penetration in volar plating of intra-articular distal radius fractures
por: Prijs, Jasper, et al.
Publicado: (2021) -
Artificial intelligence fracture recognition on computed tomography: review of literature and recommendations
por: Dankelman, Lente H. M., et al.
Publicado: (2022)