Cargando…

Paleomagnetic evidence for a disk substructure in the early solar system

Astronomical observations and isotopic measurements of meteorites suggest that substructures are common in protoplanetary disks and may even have existed in the solar nebula. Here, we conduct paleomagnetic measurements of chondrules in CO carbonaceous chondrites to investigate the existence and natu...

Descripción completa

Detalles Bibliográficos
Autores principales: Borlina, Cauê S., Weiss, Benjamin P., Bryson, James F. J., Bai, Xue-Ning, Lima, Eduardo A., Chatterjee, Nilanjan, Mansbach, Elias N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519560/
https://www.ncbi.nlm.nih.gov/pubmed/34652938
http://dx.doi.org/10.1126/sciadv.abj6928
_version_ 1784584476836233216
author Borlina, Cauê S.
Weiss, Benjamin P.
Bryson, James F. J.
Bai, Xue-Ning
Lima, Eduardo A.
Chatterjee, Nilanjan
Mansbach, Elias N.
author_facet Borlina, Cauê S.
Weiss, Benjamin P.
Bryson, James F. J.
Bai, Xue-Ning
Lima, Eduardo A.
Chatterjee, Nilanjan
Mansbach, Elias N.
author_sort Borlina, Cauê S.
collection PubMed
description Astronomical observations and isotopic measurements of meteorites suggest that substructures are common in protoplanetary disks and may even have existed in the solar nebula. Here, we conduct paleomagnetic measurements of chondrules in CO carbonaceous chondrites to investigate the existence and nature of these disk substructures. We show that the paleomagnetism of chondrules in CO carbonaceous chondrites indicates the presence of a 101 ± 48 μT field in the solar nebula in the outer solar system (~3 to 7 AU from the Sun). The high intensity of this field relative to that inferred from inner solar system (~<3 AU) meteorites indicates a factor of ~5 to 150 mismatch in nebular accretion between the two reservoirs. This suggests substantial mass loss from the disk associated with a major disk substructure, possibly due to a magnetized disk wind.
format Online
Article
Text
id pubmed-8519560
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-85195602021-10-26 Paleomagnetic evidence for a disk substructure in the early solar system Borlina, Cauê S. Weiss, Benjamin P. Bryson, James F. J. Bai, Xue-Ning Lima, Eduardo A. Chatterjee, Nilanjan Mansbach, Elias N. Sci Adv Earth, Environmental, Ecological, and Space Sciences Astronomical observations and isotopic measurements of meteorites suggest that substructures are common in protoplanetary disks and may even have existed in the solar nebula. Here, we conduct paleomagnetic measurements of chondrules in CO carbonaceous chondrites to investigate the existence and nature of these disk substructures. We show that the paleomagnetism of chondrules in CO carbonaceous chondrites indicates the presence of a 101 ± 48 μT field in the solar nebula in the outer solar system (~3 to 7 AU from the Sun). The high intensity of this field relative to that inferred from inner solar system (~<3 AU) meteorites indicates a factor of ~5 to 150 mismatch in nebular accretion between the two reservoirs. This suggests substantial mass loss from the disk associated with a major disk substructure, possibly due to a magnetized disk wind. American Association for the Advancement of Science 2021-10-15 /pmc/articles/PMC8519560/ /pubmed/34652938 http://dx.doi.org/10.1126/sciadv.abj6928 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Earth, Environmental, Ecological, and Space Sciences
Borlina, Cauê S.
Weiss, Benjamin P.
Bryson, James F. J.
Bai, Xue-Ning
Lima, Eduardo A.
Chatterjee, Nilanjan
Mansbach, Elias N.
Paleomagnetic evidence for a disk substructure in the early solar system
title Paleomagnetic evidence for a disk substructure in the early solar system
title_full Paleomagnetic evidence for a disk substructure in the early solar system
title_fullStr Paleomagnetic evidence for a disk substructure in the early solar system
title_full_unstemmed Paleomagnetic evidence for a disk substructure in the early solar system
title_short Paleomagnetic evidence for a disk substructure in the early solar system
title_sort paleomagnetic evidence for a disk substructure in the early solar system
topic Earth, Environmental, Ecological, and Space Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519560/
https://www.ncbi.nlm.nih.gov/pubmed/34652938
http://dx.doi.org/10.1126/sciadv.abj6928
work_keys_str_mv AT borlinacaues paleomagneticevidenceforadisksubstructureintheearlysolarsystem
AT weissbenjaminp paleomagneticevidenceforadisksubstructureintheearlysolarsystem
AT brysonjamesfj paleomagneticevidenceforadisksubstructureintheearlysolarsystem
AT baixuening paleomagneticevidenceforadisksubstructureintheearlysolarsystem
AT limaeduardoa paleomagneticevidenceforadisksubstructureintheearlysolarsystem
AT chatterjeenilanjan paleomagneticevidenceforadisksubstructureintheearlysolarsystem
AT mansbacheliasn paleomagneticevidenceforadisksubstructureintheearlysolarsystem