Cargando…
The Tea Plant Leaf Cuticle: From Plant Protection to Tea Quality
Camellia sinensis (tea tree) is a perennial evergreen woody crop that has been planted in more than 50 countries worldwide; its leaves are harvested to make tea, which is one of the most popular nonalcoholic beverages. The cuticle is the major transpiration barrier to restrict nonstomatal water loss...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519587/ https://www.ncbi.nlm.nih.gov/pubmed/34659320 http://dx.doi.org/10.3389/fpls.2021.751547 |
_version_ | 1784584482915876864 |
---|---|
author | Chen, Mingjie |
author_facet | Chen, Mingjie |
author_sort | Chen, Mingjie |
collection | PubMed |
description | Camellia sinensis (tea tree) is a perennial evergreen woody crop that has been planted in more than 50 countries worldwide; its leaves are harvested to make tea, which is one of the most popular nonalcoholic beverages. The cuticle is the major transpiration barrier to restrict nonstomatal water loss and it affects the drought tolerance of tea plants. The cuticle may also provide molecular cues for the interaction with herbivores and pathogens. The tea-making process almost always includes a postharvest withering treatment to reduce leaf water content, and many studies have demonstrated that withering treatment-induced metabolite transformation is essential to shape the quality of the tea made. Tea leaf cuticle is expected to affect its withering properties and the dynamics of postharvest metabolome remodeling. In addition, it has long been speculated that the cuticle may contribute to the aroma quality of tea. However, concrete experimental evidence is lacking to prove or refute this hypothesis. Even though its relevance to the abiotic and biotic stress tolerance and postharvest processing properties of tea tree, tea cuticle has long been neglected. Recently, there are several studies on the tea cuticle regarding its structure, wax composition, transpiration barrier organization, environmental stresses-induced wax modification, and structure–function relations. This review is devoted to tea cuticle, the recent research progresses were summarized and unresolved questions and future research directions were also discussed. |
format | Online Article Text |
id | pubmed-8519587 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85195872021-10-16 The Tea Plant Leaf Cuticle: From Plant Protection to Tea Quality Chen, Mingjie Front Plant Sci Plant Science Camellia sinensis (tea tree) is a perennial evergreen woody crop that has been planted in more than 50 countries worldwide; its leaves are harvested to make tea, which is one of the most popular nonalcoholic beverages. The cuticle is the major transpiration barrier to restrict nonstomatal water loss and it affects the drought tolerance of tea plants. The cuticle may also provide molecular cues for the interaction with herbivores and pathogens. The tea-making process almost always includes a postharvest withering treatment to reduce leaf water content, and many studies have demonstrated that withering treatment-induced metabolite transformation is essential to shape the quality of the tea made. Tea leaf cuticle is expected to affect its withering properties and the dynamics of postharvest metabolome remodeling. In addition, it has long been speculated that the cuticle may contribute to the aroma quality of tea. However, concrete experimental evidence is lacking to prove or refute this hypothesis. Even though its relevance to the abiotic and biotic stress tolerance and postharvest processing properties of tea tree, tea cuticle has long been neglected. Recently, there are several studies on the tea cuticle regarding its structure, wax composition, transpiration barrier organization, environmental stresses-induced wax modification, and structure–function relations. This review is devoted to tea cuticle, the recent research progresses were summarized and unresolved questions and future research directions were also discussed. Frontiers Media S.A. 2021-10-01 /pmc/articles/PMC8519587/ /pubmed/34659320 http://dx.doi.org/10.3389/fpls.2021.751547 Text en Copyright © 2021 Chen. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Chen, Mingjie The Tea Plant Leaf Cuticle: From Plant Protection to Tea Quality |
title | The Tea Plant Leaf Cuticle: From Plant Protection to Tea Quality |
title_full | The Tea Plant Leaf Cuticle: From Plant Protection to Tea Quality |
title_fullStr | The Tea Plant Leaf Cuticle: From Plant Protection to Tea Quality |
title_full_unstemmed | The Tea Plant Leaf Cuticle: From Plant Protection to Tea Quality |
title_short | The Tea Plant Leaf Cuticle: From Plant Protection to Tea Quality |
title_sort | tea plant leaf cuticle: from plant protection to tea quality |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519587/ https://www.ncbi.nlm.nih.gov/pubmed/34659320 http://dx.doi.org/10.3389/fpls.2021.751547 |
work_keys_str_mv | AT chenmingjie theteaplantleafcuticlefromplantprotectiontoteaquality AT chenmingjie teaplantleafcuticlefromplantprotectiontoteaquality |