Cargando…
Label-Based Alignment Multi-Source Domain Adaptation for Cross-Subject EEG Fatigue Mental State Evaluation
Accurate detection of driving fatigue is helpful in significantly reducing the rate of road traffic accidents. Electroencephalogram (EEG) based methods are proven to be efficient to evaluate mental fatigue. Due to its high non-linearity, as well as significant individual differences, how to perform...
Autores principales: | Zhao, Yue, Dai, Guojun, Borghini, Gianluca, Zhang, Jiaming, Li, Xiufeng, Zhang, Zhenyan, Aricò, Pietro, Di Flumeri, Gianluca, Babiloni, Fabio, Zeng, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519604/ https://www.ncbi.nlm.nih.gov/pubmed/34658814 http://dx.doi.org/10.3389/fnhum.2021.706270 |
Ejemplares similares
-
An EEG-Based Transfer Learning Method for Cross-Subject Fatigue Mental State Prediction
por: Zeng, Hong, et al.
Publicado: (2021) -
EEG-Based Index for Timely Detecting User’s Drowsiness Occurrence in Automotive Applications
por: Di Flumeri, Gianluca, et al.
Publicado: (2022) -
Evaluation of a New Lightweight EEG Technology for Translational Applications of Passive Brain-Computer Interfaces
por: Sciaraffa, Nicolina, et al.
Publicado: (2022) -
InstanceEasyTL: An Improved Transfer-Learning Method for EEG-Based Cross-Subject Fatigue Detection
por: Zeng, Hong, et al.
Publicado: (2020) -
The Dry Revolution: Evaluation of Three Different EEG Dry Electrode Types in Terms of Signal Spectral Features, Mental States Classification and Usability
por: Di Flumeri, Gianluca, et al.
Publicado: (2019)