Cargando…
Normalization of SARS-CoV-2 viral load via RT-qPCR provides higher-resolution data for comparison across time and between patients
The 2020 pandemic has transformed the world and elicited thousands of studies to better understand the SARS-CoV-2 virus. Viral load has been a common measure to monitor treatment therapies and associate viral dynamics with patient outcomes; however, methods associated with viral load have varied acr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519666/ https://www.ncbi.nlm.nih.gov/pubmed/34662682 http://dx.doi.org/10.1016/j.virusres.2021.198604 |
Sumario: | The 2020 pandemic has transformed the world and elicited thousands of studies to better understand the SARS-CoV-2 virus. Viral load has been a common measure to monitor treatment therapies and associate viral dynamics with patient outcomes; however, methods associated with viral load have varied across studies. These variations have the potential to sacrifice the accuracy of findings as they often do not account for inter-assay variation or variation across samples. In a retrospective study of nasopharyngeal samples, we found a significant amount of variation within the DNA and RNA targets; for example, across time within a single patient, there was an average of a 32-fold change. Further, we explore the impacts of host normalization on 94 clinical samples using the TGen Quantitative SARS-CoV-2 assay, finding that without host normalization samples with the same viral concentration can have up to 100-fold variation in the viral load. |
---|