Cargando…
Minibatch Recursive Least Squares Q-Learning
The deep Q-network (DQN) is one of the most successful reinforcement learning algorithms, but it has some drawbacks such as slow convergence and instability. In contrast, the traditional reinforcement learning algorithms with linear function approximation usually have faster convergence and better s...
Autores principales: | Zhang, Chunyuan, Song, Qi, Meng, Zeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519689/ https://www.ncbi.nlm.nih.gov/pubmed/34659393 http://dx.doi.org/10.1155/2021/5370281 |
Ejemplares similares
-
Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization
por: Zhang, Chunyuan, et al.
Publicado: (2016) -
Recursive least squares background prediction of univariate syndromic surveillance data
por: Najmi, Amir-Homayoon, et al.
Publicado: (2009) -
Recursive N-Way Partial Least Squares for Brain-Computer Interface
por: Eliseyev, Andrey, et al.
Publicado: (2013) -
Early Stopping Criterion for Recursive Least Squares Training of Behavioural Models
por: Loughman, Méabh, et al.
Publicado: (2022) -
A Novel Adaptive Recursive Least Squares Filter to Remove the Motion Artifact in Seismocardiography
por: Yu, Shuai, et al.
Publicado: (2020)