Cargando…
Reproducibility and accuracy of microscale thermophoresis in the NanoTemper Monolith: a multi laboratory benchmark study
Microscale thermophoresis (MST), and the closely related Temperature Related Intensity Change (TRIC), are synonyms for a recently developed measurement technique in the field of biophysics to quantify biomolecular interactions, using the (capillary-based) NanoTemper Monolith and (multiwell plate-bas...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519905/ https://www.ncbi.nlm.nih.gov/pubmed/33881594 http://dx.doi.org/10.1007/s00249-021-01532-6 |
_version_ | 1784584552097775616 |
---|---|
author | López-Méndez, Blanca Baron, Bruno Brautigam, Chad A. Jowitt, Thomas A. Knauer, Stefan H. Uebel, Stephan Williams, Mark A. Sedivy, Arthur Abian, Olga Abreu, Celeste Adamczyk, Malgorzata Bal, Wojciech Berger, Sylvie Buell, Alexander K. Carolis, Carlo Daviter, Tina Fish, Alexander Garcia-Alai, Maria Guenther, Christian Hamacek, Josef Holková, Jitka Houser, Josef Johnson, Chris Kelly, Sharon Leech, Andrew Mas, Caroline Matulis, Daumantas McLaughlin, Stephen H. Montserret, Roland Nasreddine, Rouba Nehmé, Reine Nguyen, Quyen Ortega-Alarcón, David Perez, Kathryn Pirc, Katja Piszczek, Grzegorz Podobnik, Marjetka Rodrigo, Natalia Rokov-Plavec, Jasmina Schaefer, Susanne Sharpe, Tim Southall, June Staunton, David Tavares, Pedro Vanek, Ondrej Weyand, Michael Wu, Di |
author_facet | López-Méndez, Blanca Baron, Bruno Brautigam, Chad A. Jowitt, Thomas A. Knauer, Stefan H. Uebel, Stephan Williams, Mark A. Sedivy, Arthur Abian, Olga Abreu, Celeste Adamczyk, Malgorzata Bal, Wojciech Berger, Sylvie Buell, Alexander K. Carolis, Carlo Daviter, Tina Fish, Alexander Garcia-Alai, Maria Guenther, Christian Hamacek, Josef Holková, Jitka Houser, Josef Johnson, Chris Kelly, Sharon Leech, Andrew Mas, Caroline Matulis, Daumantas McLaughlin, Stephen H. Montserret, Roland Nasreddine, Rouba Nehmé, Reine Nguyen, Quyen Ortega-Alarcón, David Perez, Kathryn Pirc, Katja Piszczek, Grzegorz Podobnik, Marjetka Rodrigo, Natalia Rokov-Plavec, Jasmina Schaefer, Susanne Sharpe, Tim Southall, June Staunton, David Tavares, Pedro Vanek, Ondrej Weyand, Michael Wu, Di |
author_sort | López-Méndez, Blanca |
collection | PubMed |
description | Microscale thermophoresis (MST), and the closely related Temperature Related Intensity Change (TRIC), are synonyms for a recently developed measurement technique in the field of biophysics to quantify biomolecular interactions, using the (capillary-based) NanoTemper Monolith and (multiwell plate-based) Dianthus instruments. Although this technique has been extensively used within the scientific community due to its low sample consumption, ease of use, and ubiquitous applicability, MST/TRIC has not enjoyed the unambiguous acceptance from biophysicists afforded to other biophysical techniques like isothermal titration calorimetry (ITC) or surface plasmon resonance (SPR). This might be attributed to several facts, e.g., that various (not fully understood) effects are contributing to the signal, that the technique is licensed to only a single instrument developer, NanoTemper Technology, and that its reliability and reproducibility have never been tested independently and systematically. Thus, a working group of ARBRE-MOBIEU has set up a benchmark study on MST/TRIC to assess this technique as a method to characterize biomolecular interactions. Here we present the results of this study involving 32 scientific groups within Europe and two groups from the US, carrying out experiments on 40 Monolith instruments, employing a standard operation procedure and centrally prepared samples. A protein–small molecule interaction, a newly developed protein–protein interaction system and a pure dye were used as test systems. We characterized the instrument properties and evaluated instrument performance, reproducibility, the effect of different analysis tools, the influence of the experimenter during data analysis, and thus the overall reliability of this method. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00249-021-01532-6. |
format | Online Article Text |
id | pubmed-8519905 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-85199052021-10-29 Reproducibility and accuracy of microscale thermophoresis in the NanoTemper Monolith: a multi laboratory benchmark study López-Méndez, Blanca Baron, Bruno Brautigam, Chad A. Jowitt, Thomas A. Knauer, Stefan H. Uebel, Stephan Williams, Mark A. Sedivy, Arthur Abian, Olga Abreu, Celeste Adamczyk, Malgorzata Bal, Wojciech Berger, Sylvie Buell, Alexander K. Carolis, Carlo Daviter, Tina Fish, Alexander Garcia-Alai, Maria Guenther, Christian Hamacek, Josef Holková, Jitka Houser, Josef Johnson, Chris Kelly, Sharon Leech, Andrew Mas, Caroline Matulis, Daumantas McLaughlin, Stephen H. Montserret, Roland Nasreddine, Rouba Nehmé, Reine Nguyen, Quyen Ortega-Alarcón, David Perez, Kathryn Pirc, Katja Piszczek, Grzegorz Podobnik, Marjetka Rodrigo, Natalia Rokov-Plavec, Jasmina Schaefer, Susanne Sharpe, Tim Southall, June Staunton, David Tavares, Pedro Vanek, Ondrej Weyand, Michael Wu, Di Eur Biophys J Original Article Microscale thermophoresis (MST), and the closely related Temperature Related Intensity Change (TRIC), are synonyms for a recently developed measurement technique in the field of biophysics to quantify biomolecular interactions, using the (capillary-based) NanoTemper Monolith and (multiwell plate-based) Dianthus instruments. Although this technique has been extensively used within the scientific community due to its low sample consumption, ease of use, and ubiquitous applicability, MST/TRIC has not enjoyed the unambiguous acceptance from biophysicists afforded to other biophysical techniques like isothermal titration calorimetry (ITC) or surface plasmon resonance (SPR). This might be attributed to several facts, e.g., that various (not fully understood) effects are contributing to the signal, that the technique is licensed to only a single instrument developer, NanoTemper Technology, and that its reliability and reproducibility have never been tested independently and systematically. Thus, a working group of ARBRE-MOBIEU has set up a benchmark study on MST/TRIC to assess this technique as a method to characterize biomolecular interactions. Here we present the results of this study involving 32 scientific groups within Europe and two groups from the US, carrying out experiments on 40 Monolith instruments, employing a standard operation procedure and centrally prepared samples. A protein–small molecule interaction, a newly developed protein–protein interaction system and a pure dye were used as test systems. We characterized the instrument properties and evaluated instrument performance, reproducibility, the effect of different analysis tools, the influence of the experimenter during data analysis, and thus the overall reliability of this method. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00249-021-01532-6. Springer International Publishing 2021-04-21 2021 /pmc/articles/PMC8519905/ /pubmed/33881594 http://dx.doi.org/10.1007/s00249-021-01532-6 Text en © The Author(s) 2021, corrected publication 2021 https://creativecommons.org/licenses/by/4.0/ Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Article López-Méndez, Blanca Baron, Bruno Brautigam, Chad A. Jowitt, Thomas A. Knauer, Stefan H. Uebel, Stephan Williams, Mark A. Sedivy, Arthur Abian, Olga Abreu, Celeste Adamczyk, Malgorzata Bal, Wojciech Berger, Sylvie Buell, Alexander K. Carolis, Carlo Daviter, Tina Fish, Alexander Garcia-Alai, Maria Guenther, Christian Hamacek, Josef Holková, Jitka Houser, Josef Johnson, Chris Kelly, Sharon Leech, Andrew Mas, Caroline Matulis, Daumantas McLaughlin, Stephen H. Montserret, Roland Nasreddine, Rouba Nehmé, Reine Nguyen, Quyen Ortega-Alarcón, David Perez, Kathryn Pirc, Katja Piszczek, Grzegorz Podobnik, Marjetka Rodrigo, Natalia Rokov-Plavec, Jasmina Schaefer, Susanne Sharpe, Tim Southall, June Staunton, David Tavares, Pedro Vanek, Ondrej Weyand, Michael Wu, Di Reproducibility and accuracy of microscale thermophoresis in the NanoTemper Monolith: a multi laboratory benchmark study |
title | Reproducibility and accuracy of microscale thermophoresis in the NanoTemper Monolith: a multi laboratory benchmark study |
title_full | Reproducibility and accuracy of microscale thermophoresis in the NanoTemper Monolith: a multi laboratory benchmark study |
title_fullStr | Reproducibility and accuracy of microscale thermophoresis in the NanoTemper Monolith: a multi laboratory benchmark study |
title_full_unstemmed | Reproducibility and accuracy of microscale thermophoresis in the NanoTemper Monolith: a multi laboratory benchmark study |
title_short | Reproducibility and accuracy of microscale thermophoresis in the NanoTemper Monolith: a multi laboratory benchmark study |
title_sort | reproducibility and accuracy of microscale thermophoresis in the nanotemper monolith: a multi laboratory benchmark study |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519905/ https://www.ncbi.nlm.nih.gov/pubmed/33881594 http://dx.doi.org/10.1007/s00249-021-01532-6 |
work_keys_str_mv | AT lopezmendezblanca reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT baronbruno reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT brautigamchada reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT jowittthomasa reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT knauerstefanh reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT uebelstephan reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT williamsmarka reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT sedivyarthur reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT abianolga reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT abreuceleste reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT adamczykmalgorzata reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT balwojciech reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT bergersylvie reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT buellalexanderk reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT caroliscarlo reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT davitertina reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT fishalexander reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT garciaalaimaria reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT guentherchristian reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT hamacekjosef reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT holkovajitka reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT houserjosef reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT johnsonchris reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT kellysharon reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT leechandrew reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT mascaroline reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT matulisdaumantas reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT mclaughlinstephenh reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT montserretroland reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT nasreddinerouba reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT nehmereine reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT nguyenquyen reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT ortegaalarcondavid reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT perezkathryn reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT pirckatja reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT piszczekgrzegorz reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT podobnikmarjetka reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT rodrigonatalia reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT rokovplavecjasmina reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT schaefersusanne reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT sharpetim reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT southalljune reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT stauntondavid reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT tavarespedro reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT vanekondrej reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT weyandmichael reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy AT wudi reproducibilityandaccuracyofmicroscalethermophoresisinthenanotempermonolithamultilaboratorybenchmarkstudy |