Cargando…
Empirically classifying network mechanisms
Network data are often explained by assuming a generating mechanism and estimating related parameters. Without a way to test the relevance of assumed mechanisms, conclusions from such models may be misleading. Here we introduce a simple empirical approach to mechanistically classify arbitrary networ...
Autores principales: | Langendorf, Ryan E., Burgess, Matthew G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519944/ https://www.ncbi.nlm.nih.gov/pubmed/34654854 http://dx.doi.org/10.1038/s41598-021-99251-7 |
Ejemplares similares
-
Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers
por: Deist, Timo M., et al.
Publicado: (2018) -
Transcriptional network classifiers
por: Chang, Hsun-Hsien, et al.
Publicado: (2009) -
Empirical Study on Classifiers for Earlier Prediction of COVID-19 Infection Cure and Death Rate in the Indian States
por: Guleria, Pratiyush, et al.
Publicado: (2022) -
Cross-classified multilevel models (CCMM) in health research: A systematic review of published empirical studies and recommendations for best practices
por: Barker, Kathryn M., et al.
Publicado: (2020) -
Optimal classifier selection and negative bias in error rate estimation: an empirical study on high-dimensional prediction
por: Boulesteix, Anne-Laure, et al.
Publicado: (2009)