Cargando…

Ultrafast optical circuit switching for data centers using integrated soliton microcombs

Due to the slowdown of Moore’s law, it will become increasingly challenging to efficiently scale the network in current data centers utilizing electrical packet switches as data rates grow. Optical circuit switches (OCS) represent an appealing option to overcome this issue by eliminating the need fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Raja, Arslan Sajid, Lange, Sophie, Karpov, Maxim, Shi, Kai, Fu, Xin, Behrendt, Raphael, Cletheroe, Daniel, Lukashchuk, Anton, Haller, Istvan, Karinou, Fotini, Thomsen, Benn, Jozwik, Krzysztof, Liu, Junqiu, Costa, Paolo, Kippenberg, Tobias Jan, Ballani, Hitesh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520010/
https://www.ncbi.nlm.nih.gov/pubmed/34654810
http://dx.doi.org/10.1038/s41467-021-25841-8
Descripción
Sumario:Due to the slowdown of Moore’s law, it will become increasingly challenging to efficiently scale the network in current data centers utilizing electrical packet switches as data rates grow. Optical circuit switches (OCS) represent an appealing option to overcome this issue by eliminating the need for expensive and power-hungry transceivers and electrical switches in the core of the network. In particular, optical switches based on tunable lasers and arrayed waveguide grating routers are quite promising due to the use of a passive core, which increases fault tolerance and reduces management overhead. Such an OCS-network can offer high bandwidth, low network latency and an energy-efficient and scalable data center network. To support dynamic data center workloads efficiently, however, it is critical to switch between wavelengths at nanosecond (ns) timescales. Here we demonstrate ultrafast OCS based on a microcomb and semiconductor optical amplifiers (SOAs). Using a photonic integrated Si(3)N(4) microcomb, sub-ns (<520 ps) switching along with the 25-Gbps non-return-to-zero (NRZ) and 50-Gbps four-level pulse amplitude modulation (PAM-4) burst mode data transmission is achieved. Further, we use a photonic integrated circuit comprising an Indium phosphide based SOA array and an arrayed waveguide grating to show sub-ns switching (<900 ps) along with 25-Gbps NRZ burst mode transmission providing a path towards a more scalable and energy-efficient wavelength-switched network for data centers in the post Moore’s Law era.