Cargando…

Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology

Between 6–20% of the cellular proteome is under circadian control and tunes mammalian cell function with daily environmental cycles. For cell viability, and to maintain volume within narrow limits, the daily variation in osmotic potential exerted by changes in the soluble proteome must be counterbal...

Descripción completa

Detalles Bibliográficos
Autores principales: Stangherlin, Alessandra, Watson, Joseph L., Wong, David C. S., Barbiero, Silvia, Zeng, Aiwei, Seinkmane, Estere, Chew, Sew Peak, Beale, Andrew D., Hayter, Edward A., Guna, Alina, Inglis, Alison J., Putker, Marrit, Bartolami, Eline, Matile, Stefan, Lequeux, Nicolas, Pons, Thomas, Day, Jason, van Ooijen, Gerben, Voorhees, Rebecca M., Bechtold, David A., Derivery, Emmanuel, Edgar, Rachel S., Newham, Peter, O’Neill, John S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520019/
https://www.ncbi.nlm.nih.gov/pubmed/34654800
http://dx.doi.org/10.1038/s41467-021-25942-4
_version_ 1784584577880162304
author Stangherlin, Alessandra
Watson, Joseph L.
Wong, David C. S.
Barbiero, Silvia
Zeng, Aiwei
Seinkmane, Estere
Chew, Sew Peak
Beale, Andrew D.
Hayter, Edward A.
Guna, Alina
Inglis, Alison J.
Putker, Marrit
Bartolami, Eline
Matile, Stefan
Lequeux, Nicolas
Pons, Thomas
Day, Jason
van Ooijen, Gerben
Voorhees, Rebecca M.
Bechtold, David A.
Derivery, Emmanuel
Edgar, Rachel S.
Newham, Peter
O’Neill, John S.
author_facet Stangherlin, Alessandra
Watson, Joseph L.
Wong, David C. S.
Barbiero, Silvia
Zeng, Aiwei
Seinkmane, Estere
Chew, Sew Peak
Beale, Andrew D.
Hayter, Edward A.
Guna, Alina
Inglis, Alison J.
Putker, Marrit
Bartolami, Eline
Matile, Stefan
Lequeux, Nicolas
Pons, Thomas
Day, Jason
van Ooijen, Gerben
Voorhees, Rebecca M.
Bechtold, David A.
Derivery, Emmanuel
Edgar, Rachel S.
Newham, Peter
O’Neill, John S.
author_sort Stangherlin, Alessandra
collection PubMed
description Between 6–20% of the cellular proteome is under circadian control and tunes mammalian cell function with daily environmental cycles. For cell viability, and to maintain volume within narrow limits, the daily variation in osmotic potential exerted by changes in the soluble proteome must be counterbalanced. The mechanisms and consequences of this osmotic compensation have not been investigated before. In cultured cells and in tissue we find that compensation involves electroneutral active transport of Na(+), K(+), and Cl(−) through differential activity of SLC12A family cotransporters. In cardiomyocytes ex vivo and in vivo, compensatory ion fluxes confer daily variation in electrical activity. Perturbation of soluble protein abundance has commensurate effects on ion composition and cellular function across the circadian cycle. Thus, circadian regulation of the proteome impacts ion homeostasis with substantial consequences for the physiology of electrically active cells such as cardiomyocytes.
format Online
Article
Text
id pubmed-8520019
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-85200192021-10-29 Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology Stangherlin, Alessandra Watson, Joseph L. Wong, David C. S. Barbiero, Silvia Zeng, Aiwei Seinkmane, Estere Chew, Sew Peak Beale, Andrew D. Hayter, Edward A. Guna, Alina Inglis, Alison J. Putker, Marrit Bartolami, Eline Matile, Stefan Lequeux, Nicolas Pons, Thomas Day, Jason van Ooijen, Gerben Voorhees, Rebecca M. Bechtold, David A. Derivery, Emmanuel Edgar, Rachel S. Newham, Peter O’Neill, John S. Nat Commun Article Between 6–20% of the cellular proteome is under circadian control and tunes mammalian cell function with daily environmental cycles. For cell viability, and to maintain volume within narrow limits, the daily variation in osmotic potential exerted by changes in the soluble proteome must be counterbalanced. The mechanisms and consequences of this osmotic compensation have not been investigated before. In cultured cells and in tissue we find that compensation involves electroneutral active transport of Na(+), K(+), and Cl(−) through differential activity of SLC12A family cotransporters. In cardiomyocytes ex vivo and in vivo, compensatory ion fluxes confer daily variation in electrical activity. Perturbation of soluble protein abundance has commensurate effects on ion composition and cellular function across the circadian cycle. Thus, circadian regulation of the proteome impacts ion homeostasis with substantial consequences for the physiology of electrically active cells such as cardiomyocytes. Nature Publishing Group UK 2021-10-15 /pmc/articles/PMC8520019/ /pubmed/34654800 http://dx.doi.org/10.1038/s41467-021-25942-4 Text en © Crown 2021, corrected publication 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Stangherlin, Alessandra
Watson, Joseph L.
Wong, David C. S.
Barbiero, Silvia
Zeng, Aiwei
Seinkmane, Estere
Chew, Sew Peak
Beale, Andrew D.
Hayter, Edward A.
Guna, Alina
Inglis, Alison J.
Putker, Marrit
Bartolami, Eline
Matile, Stefan
Lequeux, Nicolas
Pons, Thomas
Day, Jason
van Ooijen, Gerben
Voorhees, Rebecca M.
Bechtold, David A.
Derivery, Emmanuel
Edgar, Rachel S.
Newham, Peter
O’Neill, John S.
Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology
title Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology
title_full Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology
title_fullStr Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology
title_full_unstemmed Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology
title_short Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology
title_sort compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520019/
https://www.ncbi.nlm.nih.gov/pubmed/34654800
http://dx.doi.org/10.1038/s41467-021-25942-4
work_keys_str_mv AT stangherlinalessandra compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT watsonjosephl compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT wongdavidcs compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT barbierosilvia compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT zengaiwei compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT seinkmaneestere compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT chewsewpeak compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT bealeandrewd compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT hayteredwarda compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT gunaalina compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT inglisalisonj compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT putkermarrit compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT bartolamieline compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT matilestefan compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT lequeuxnicolas compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT ponsthomas compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT dayjason compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT vanooijengerben compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT voorheesrebeccam compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT bechtolddavida compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT deriveryemmanuel compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT edgarrachels compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT newhampeter compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology
AT oneilljohns compensatoryiontransportbuffersdailyproteinrhythmstoregulateosmoticbalanceandcellularphysiology