Cargando…

SARS-CoV-2 competes with host mRNAs for efficient translation by maintaining the mutations favorable for translation initiation

During SARS-CoV-2 proliferation, the translation of viral RNAs is usually the rate-limiting step. Understanding the molecular details of this step is beneficial for uncovering the origin and evolution of SARS-CoV-2 and even for controlling the pandemic. To date, it is unclear how SARS-CoV-2 competes...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yanping, Jin, Xiaojie, Wang, Haiyan, Miao, Yaoyao, Yang, Xiaoping, Jiang, Wenqing, Yin, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520108/
https://www.ncbi.nlm.nih.gov/pubmed/34655422
http://dx.doi.org/10.1007/s13353-021-00665-w
Descripción
Sumario:During SARS-CoV-2 proliferation, the translation of viral RNAs is usually the rate-limiting step. Understanding the molecular details of this step is beneficial for uncovering the origin and evolution of SARS-CoV-2 and even for controlling the pandemic. To date, it is unclear how SARS-CoV-2 competes with host mRNAs for ribosome binding and efficient translation. We retrieved the coding sequences of all human genes and SARS-CoV-2 genes. We systematically profiled the GC content and folding energy of each CDS. Considering that some fixed or polymorphic mutations exist in SARS-CoV-2 and human genomes, all algorithms and analyses were applied to both pre-mutate and post-mutate versions. In SARS-CoV-2 but not human, the 5-prime end of CDS had lower GC content and less RNA structure than the 3-prime part, which was favorable for ribosome binding and efficient translation initiation. Globally, the fixed and polymorphic mutations in SARS-CoV-2 had created an even lower GC content at the 5-prime end of CDS. In contrast, no similar patterns were observed for the fixed and polymorphic mutations in human genome. Compared with human RNAs, the SARS-CoV-2 RNAs have less RNA structure in the 5-prime end and thus are more favorable of fast translation initiation. The fixed and polymorphic mutations in SARS-CoV-2 are further amplifying this advantage. This might serve as a strategy for SARS-CoV-2 to adapt to the human host.