Cargando…
The impact of cross-docked poses on performance of machine learning classifier for protein–ligand binding pose prediction
Structure-based drug design depends on the detailed knowledge of the three-dimensional (3D) structures of protein–ligand binding complexes, but accurate prediction of ligand-binding poses is still a major challenge for molecular docking due to deficiency of scoring functions (SFs) and ignorance of p...
Autores principales: | Shen, Chao, Hu, Xueping, Gao, Junbo, Zhang, Xujun, Zhong, Haiyang, Wang, Zhe, Xu, Lei, Kang, Yu, Cao, Dongsheng, Hou, Tingjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520186/ https://www.ncbi.nlm.nih.gov/pubmed/34656169 http://dx.doi.org/10.1186/s13321-021-00560-w |
Ejemplares similares
-
Ligand Pose and Orientational Sampling in Molecular Docking
por: Coleman, Ryan G., et al.
Publicado: (2013) -
Open Binding Pose Metadynamics: An Effective Approach
for the Ranking of Protein–Ligand Binding Poses
por: Lukauskis, Dominykas, et al.
Publicado: (2022) -
Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins
por: Ashtawy, Hossam M, et al.
Publicado: (2015) -
COACH-D: improved protein–ligand binding sites prediction with refined ligand-binding poses through molecular docking
por: Wu, Qi, et al.
Publicado: (2018) -
Machine learning accelerates MD-based binding pose prediction between ligands and proteins
por: Terayama, Kei, et al.
Publicado: (2018)