Cargando…
Deep semi-supervised learning ensemble framework for classifying co-mentions of human proteins and phenotypes
BACKGROUND: Identifying human protein-phenotype relationships has attracted researchers in bioinformatics and biomedical natural language processing due to its importance in uncovering rare and complex diseases. Since experimental validation of protein-phenotype associations is prohibitive, automate...
Autores principales: | Pourreza Shahri, Morteza, Kahanda, Indika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520253/ https://www.ncbi.nlm.nih.gov/pubmed/34656098 http://dx.doi.org/10.1186/s12859-021-04421-z |
Ejemplares similares
-
Robust identification of molecular phenotypes using semi-supervised learning
por: Roder, Heinrich, et al.
Publicado: (2019) -
Semi-Supervised Recurrent Neural Network for Adverse Drug Reaction mention extraction
por: Gupta, Shashank, et al.
Publicado: (2018) -
Deep neural networks ensemble for detecting medication mentions in tweets
por: Weissenbacher, Davy, et al.
Publicado: (2019) -
Semi-supervised COVID-19 CT image segmentation using deep generative models
por: Zammit, Judah, et al.
Publicado: (2022) -
IILLS: predicting virus-receptor interactions based on similarity and semi-supervised learning
por: Yan, Cheng, et al.
Publicado: (2019)