Cargando…
Brain tissue development of neonates with Congenital Septal Defect: Study on MRI Image Evaluation of Deep Learning Algorithm
OBJECTIVES: This article is based on deep learning algorithms and uses MRI to study the development of congenital heart septal defects in neonatal brain tissue. METHODS: From January 2018 to December 2019, 150 cases of congenital cardiac paper septal defect were retrospectively analyzed on 50 cases...
Autores principales: | Zhu, Jianfei, Chen, Jiaolei, Zhang, Yunhui, Ji, Jianwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Professional Medical Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520356/ https://www.ncbi.nlm.nih.gov/pubmed/34712300 http://dx.doi.org/10.12669/pjms.37.6-WIT.4863 |
Ejemplares similares
-
Accurate segmentation of neonatal brain MRI with deep learning
por: Richter, Leonie, et al.
Publicado: (2022) -
Molecular genetics of congenital atrial septal defects
por: Posch, Maximilian G., et al.
Publicado: (2009) -
Survival of patients with congenital ventricular septal defect
por: Eckerström, Filip, et al.
Publicado: (2022) -
Interatrial Septal Defect with Mitral Insufficiency of Congenital Origin
por: Kutumbiah, P., et al.
Publicado: (1937) -
Percutaneous Transcatheter Closure of Congenital Ventricular Septal Defects
por: Song, Jinyoung
Publicado: (2023)