Cargando…
Nanotechnology-based therapeutic formulations in the battle against animal coronaviruses: an update
Outbreak of infectious diseases imposes a serious threat to human population and also causes a catastrophic impact on global economy. Animal coronaviruses remain as one of the intriguing problems, known to cause deadly viral diseases on economically important animal population, and also these infect...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520458/ https://www.ncbi.nlm.nih.gov/pubmed/34690535 http://dx.doi.org/10.1007/s11051-021-05341-y |
Sumario: | Outbreak of infectious diseases imposes a serious threat to human population and also causes a catastrophic impact on global economy. Animal coronaviruses remain as one of the intriguing problems, known to cause deadly viral diseases on economically important animal population, and also these infections may spread to other animals and humans. Through isolation of the infected animals from others and providing appropriate treatment using antiviral drugs, it is possible to prevent the virus transmission from animals to other species. In recent times, antiviral drug-resistant strains are being emerged as a deadly virus which are known to cause pandemic. To overcome this, nanoparticles-based formulations are developed as antiviral agent which attacks the animal coronaviruses at multiple sites in the virus replication cycle. Nanovaccines are also being formulated to protect the animals from coronaviruses. Nanoformulations contain particles of one or more dimensions in nano-scale (few nanometers to 1000 nm), which could be inorganic or organic in nature. This review presents the comprehensive outline of the nanotechnology-based therapeutics formulated against animal coronaviruses, which includes the nanoparticles-based antiviral formulations and nanoparticles-based adjuvant vaccines. The mechanism of action of these nanoparticles-based antivirals against animal coronavirus is also discussed using relevant examples. In addition, the scope of repurposing the existing nano-enabled antivirals and vaccines to combat the coronavirus infections in animals is elaborated. |
---|