Cargando…
Random survival forests for dynamic predictions of a time-to-event outcome using a longitudinal biomarker
BACKGROUND: Risk prediction models for time-to-event outcomes play a vital role in personalized decision-making. A patient’s biomarker values, such as medical lab results, are often measured over time but traditional prediction models ignore their longitudinal nature, using only baseline information...
Autores principales: | Pickett, Kaci L, Suresh, Krithika, Campbell, Kristen R, Davis, Scott, Juarez-Colunga, Elizabeth |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520610/ https://www.ncbi.nlm.nih.gov/pubmed/34657597 http://dx.doi.org/10.1186/s12874-021-01375-x |
Ejemplares similares
-
Dynamic prediction based on variability of a longitudinal biomarker
por: Campbell, Kristen R., et al.
Publicado: (2021) -
Comparison of a time-varying covariate model and a joint model of time-to-event outcomes in the presence of measurement error and interval censoring: application to kidney transplantation
por: Campbell, Kristen R., et al.
Publicado: (2019) -
Survival prediction models: an introduction to discrete-time modeling
por: Suresh, Krithika, et al.
Publicado: (2022) -
A comparison of the conditional inference survival forest model to random survival forests based on a simulation study as well as on two applications with time-to-event data
por: Nasejje, Justine B., et al.
Publicado: (2017) -
Random survival forest model identifies novel biomarkers of event-free survival in high-risk pediatric acute lymphoblastic leukemia
por: Bohannan, Zachary S., et al.
Publicado: (2022)