Cargando…

Population pharmacokinetic analysis of rivaroxaban in children and comparison to prospective physiologically‐based pharmacokinetic predictions

Rivaroxaban has been investigated in the EINSTEIN‐Jr program for the treatment of acute venous thromboembolism (VTE) in children aged 0 to 18 years and in the UNIVERSE program for thromboprophylaxis in children aged 2 to 8 years with congenital heart disease after Fontan‐procedure. Physiologically‐b...

Descripción completa

Detalles Bibliográficos
Autores principales: Willmann, Stefan, Coboeken, Katrin, Zhang, Yang, Mayer, Hannah, Ince, Ibrahim, Mesic, Emir, Thelen, Kirstin, Kubitza, Dagmar, Lensing, Anthonie W. A., Yang, Haitao, Zhu, Peijuan, Mück, Wolfgang, Drenth, Henk‐Jan, Lippert, Jörg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520753/
https://www.ncbi.nlm.nih.gov/pubmed/34292671
http://dx.doi.org/10.1002/psp4.12688
Descripción
Sumario:Rivaroxaban has been investigated in the EINSTEIN‐Jr program for the treatment of acute venous thromboembolism (VTE) in children aged 0 to 18 years and in the UNIVERSE program for thromboprophylaxis in children aged 2 to 8 years with congenital heart disease after Fontan‐procedure. Physiologically‐based pharmacokinetic (PBPK) and population pharmacokinetic (PopPK) modeling were used throughout the pediatric development of rivaroxaban according to the learn‐and‐confirm paradigm. The development strategy was to match pediatric drug exposures to adult exposure proven to be safe and efficacious. In this analysis, a refined pediatric PopPK model for rivaroxaban based on integrated EINSTEIN‐Jr data and interim PK data from part A of the UNIVERSE phase III study was developed and the influence of potential covariates and intrinsic factors on rivaroxaban exposure was assessed. The model adequately described the observed pediatric PK data. PK parameters and exposure metrics estimated by the PopPK model were compared to the predictions from a previously published pediatric PBPK model for rivaroxaban. Ninety‐one percent of the individual post hoc clearance estimates were found within the 5th to 95th percentile of the PBPK model predictions. In patients below 2 years of age, however, clearance was underpredicted by the PBPK model. The iterative and integrative use of PBPK and PopPK modeling and simulation played a major role in the establishment of the bodyweight‐adjusted rivaroxaban dosing regimen that was ultimately confirmed to be a safe and efficacious dosing regimen for children aged 0 to 18 years with acute VTE in the EINSTEIN‐Jr phase III study.