Cargando…
A hybrid machine learning/pharmacokinetic approach outperforms maximum a posteriori Bayesian estimation by selectively flattening model priors
Model‐informed precision dosing (MIPD) approaches typically apply maximum a posteriori (MAP) Bayesian estimation to determine individual pharmacokinetic (PK) parameters with the goal of optimizing future dosing regimens. This process combines knowledge about the individual, in the form of drug level...
Autores principales: | Hughes, Jasmine H., Keizer, Ron J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520755/ https://www.ncbi.nlm.nih.gov/pubmed/34270885 http://dx.doi.org/10.1002/psp4.12684 |
Ejemplares similares
-
Constrained Adjusted Maximum a Posteriori Estimation of Bayesian Network Parameters
por: Di, Ruohai, et al.
Publicado: (2021) -
Easy and reliable maximum a posteriori Bayesian estimation of pharmacokinetic parameters with the open‐source R package mapbayr
por: Le Louedec, Félicien, et al.
Publicado: (2021) -
On Using Maximum a Posteriori Probability Based on a Bayesian Model for Oscillometric Blood Pressure Estimation
por: Lee, Soojeong, et al.
Publicado: (2013) -
Score‐based measurement invariance checks for Bayesian maximum‐a‐posteriori estimates in item response theory
por: Debelak, Rudolf, et al.
Publicado: (2022) -
Efficient Exact Maximum a Posteriori Computation for Bayesian SNP Genotyping in Polyploids
por: Serang, Oliver, et al.
Publicado: (2012)