Cargando…
Evaluation of Mental Load of Drivers in Long Highway Tunnel Based on Electroencephalograph
In recent years, the mileage of the tunnels has substantially increased with the rapid highway construction that led to increasing highway tunnels. Most studies on tunnel accidents have mainly focused on the external environments, such as tunnel structure, traffic volume, and lighting. In addition,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520936/ https://www.ncbi.nlm.nih.gov/pubmed/34671283 http://dx.doi.org/10.3389/fpsyg.2021.646406 |
Sumario: | In recent years, the mileage of the tunnels has substantially increased with the rapid highway construction that led to increasing highway tunnels. Most studies on tunnel accidents have mainly focused on the external environments, such as tunnel structure, traffic volume, and lighting. In addition, although many studies on mental load of drivers have been conducted for public roads, such studies for highway tunnels have been limited. In this study, three scenarios with different front vehicle speeds (60, 45, and 30 km/h) in a two-lane long tunnel (one lane in each travel direction) were evaluated using a driving simulator. The experiment involved 24 participants (14 men and 10 women) with an average age of 25.8 years and an average experience of 3.2 years. The electroencephalogram (EEG) technology was used to collect the leading EEG indicators during the driving simulation of the scenarios: α, β, and θ waves and the wave ratio, (α + θ)/β. According to the β-wave energy measurements, the alertness of drivers was the lowest at 45 km/h after adapting to the tunnel environment, indicating that the drivers were more comfortable at this speed. This preliminary finding should help in determining the speed limit in this type of tunnel. |
---|