Cargando…

Effect of Intraoperative Ventilation Strategies on Postoperative Pulmonary Complications: A Meta-Analysis

Introduction: The role of intraoperative ventilation strategies in subjects undergoing surgery is still contested. This meta-analysis study was performed to assess the relationship between the low tidal volumes strategy and conventional mechanical ventilation in subjects undergoing surgery. Methods:...

Descripción completa

Detalles Bibliográficos
Autores principales: Lei, Min, Bao, Qi, Luo, Huanyu, Huang, Pengfei, Xie, Junran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521033/
https://www.ncbi.nlm.nih.gov/pubmed/34671638
http://dx.doi.org/10.3389/fsurg.2021.728056
Descripción
Sumario:Introduction: The role of intraoperative ventilation strategies in subjects undergoing surgery is still contested. This meta-analysis study was performed to assess the relationship between the low tidal volumes strategy and conventional mechanical ventilation in subjects undergoing surgery. Methods: A systematic literature search up to December 2020 was performed in OVID, Embase, Cochrane Library, PubMed, and Google scholar, and 28 studies including 11,846 subjects undergoing surgery at baseline and reporting a total of 2,638 receiving the low tidal volumes strategy and 3,632 receiving conventional mechanical ventilation, were found recording relationships between low tidal volumes strategy and conventional mechanical ventilation in subjects undergoing surgery. Odds ratio (OR) or mean difference (MD) with 95% confidence intervals (CIs) were calculated between the low tidal volumes strategy vs. conventional mechanical ventilation using dichotomous and continuous methods with a random or fixed-effect model. Results: The low tidal volumes strategy during surgery was significantly related to a lower rate of postoperative pulmonary complications (OR, 0.60; 95% CI, 0.44–0.83, p < 0.001), aspiration pneumonitis (OR, 0.63; 95% CI, 0.46–0.86, p < 0.001), and pleural effusion (OR, 0.72; 95% CI, 0.56–0.92, p < 0.001) compared to conventional mechanical ventilation. However, the low tidal volumes strategy during surgery was not significantly correlated with length of hospital stay (MD, −0.48; 95% CI, −0.99–0.02, p = 0.06), short-term mortality (OR, 0.88; 95% CI, 0.70–1.10, p = 0.25), atelectasis (OR, 0.76; 95% CI, 0.57–1.01, p = 0.06), acute respiratory distress (OR, 1.06; 95% CI, 0.67–1.66, p = 0.81), pneumothorax (OR, 1.37; 95% CI, 0.88–2.15, p = 0.17), pulmonary edema (OR, 0.70; 95% CI, 0.38–1.26, p = 0.23), and pulmonary embolism (OR, 0.65; 95% CI, 0.26–1.60, p = 0.35) compared to conventional mechanical ventilation. Conclusions: The low tidal volumes strategy during surgery may have an independent relationship with lower postoperative pulmonary complications, aspiration pneumonitis, and pleural effusion compared to conventional mechanical ventilation. This relationship encouraged us to recommend the low tidal volumes strategy during surgery to avoid any possible complications.