Cargando…
ALL-Net: Anatomical information lesion-wise loss function integrated into neural network for multiple sclerosis lesion segmentation
Accurate detection and segmentation of multiple sclerosis (MS) brain lesions on magnetic resonance images are important for disease diagnosis and treatment. This is a challenging task as lesions vary greatly in size, shape, location, and image contrast. The objective of our study was to develop an a...
Autores principales: | Zhang, Hang, Zhang, Jinwei, Li, Chao, Sweeney, Elizabeth M., Spincemaille, Pascal, Nguyen, Thanh D., Gauthier, Susan A., Wang, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521204/ https://www.ncbi.nlm.nih.gov/pubmed/34666289 http://dx.doi.org/10.1016/j.nicl.2021.102854 |
Ejemplares similares
-
QSMRim-Net: Imbalance-aware learning for identification of chronic active multiple sclerosis lesions on quantitative susceptibility maps
por: Zhang, Hang, et al.
Publicado: (2022) -
Triplanar U-Net with lesion-wise voting for the segmentation of new lesions on longitudinal MRI studies
por: Hitziger, Sebastian, et al.
Publicado: (2022) -
Diagnostic accuracy of semiautomatic lesion detection plus quantitative susceptibility mapping in the identification of new and enhancing multiple sclerosis lesions
por: Zhang, Shun, et al.
Publicado: (2018) -
Brain structure segmentation in the presence of multiple sclerosis lesions
por: González-Villà, Sandra, et al.
Publicado: (2019) -
Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation
por: Weeda, M.M., et al.
Publicado: (2019)