Cargando…

Mechanistic and multiscale aspects of thermo-catalytic CO(2) conversion to C(1) products

The increasing environmental concerns due to anthropogenic CO(2) emissions have called for an alternate sustainable source to fulfill rising chemical and energy demands and reduce environmental problems. The thermo-catalytic activation and conversion of abundantly available CO(2), a thermodynamicall...

Descripción completa

Detalles Bibliográficos
Autores principales: Alam, Md. Imteyaz, Cheula, Raffaele, Moroni, Gianluca, Nardi, Luca, Maestri, Matteo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521205/
https://www.ncbi.nlm.nih.gov/pubmed/34745556
http://dx.doi.org/10.1039/d1cy00922b
Descripción
Sumario:The increasing environmental concerns due to anthropogenic CO(2) emissions have called for an alternate sustainable source to fulfill rising chemical and energy demands and reduce environmental problems. The thermo-catalytic activation and conversion of abundantly available CO(2), a thermodynamically stable and kinetically inert molecule, can significantly pave the way to sustainably produce chemicals and fuels and mitigate the additional CO(2) load. This can be done through comprehensive knowledge and understanding of catalyst behavior, reaction kinetics, and reactor design. This review aims to catalog and summarize the advances in the experimental and theoretical approaches for CO(2) activation and conversion to C(1) products via heterogeneous catalytic routes. To this aim, we analyze the current literature works describing experimental analyses (e.g., catalyst characterization and kinetics measurement) as well as computational studies (e.g., microkinetic modeling and first-principles calculations). The catalytic reactions of CO(2) activation and conversion reviewed in detail are: (i) reverse water-gas shift (RWGS), (ii) CO(2) methanation, (iii) CO(2) hydrogenation to methanol, and (iv) dry reforming of methane (DRM). This review is divided into six sections. The first section provides an overview of the energy and environmental problems of our society, in which promising strategies and possible pathways to utilize anthropogenic CO(2) are highlighted. In the second section, the discussion follows with the description of materials and mechanisms of the available thermo-catalytic processes for CO(2) utilization. In the third section, the process of catalyst deactivation by coking is presented, and possible solutions to the problem are recommended based on experimental and theoretical literature works. In the fourth section, kinetic models are reviewed. In the fifth section, reaction technologies associated with the conversion of CO(2) are described, and, finally, in the sixth section, concluding remarks and future directions are provided.