Cargando…
Machine Learning for Localizing Epileptogenic-Zone in the Temporal Lobe: Quantifying the Value of Multimodal Clinical-Semiology and Imaging Concordance
Background: Epilepsy affects 50 million people worldwide and a third are refractory to medication. If a discrete cerebral focus or network can be identified, neurosurgical resection can be curative. Most excisions are in the temporal-lobe, and are more likely to result in seizure-freedom than extra-...
Autores principales: | Alim-Marvasti, Ali, Pérez-García, Fernando, Dahele, Karan, Romagnoli, Gloria, Diehl, Beate, Sparks, Rachel, Ourselin, Sebastien, Clarkson, Matthew J., Duncan, John S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521800/ https://www.ncbi.nlm.nih.gov/pubmed/34713078 http://dx.doi.org/10.3389/fdgth.2021.559103 |
Ejemplares similares
-
Software tool for visualization of a probabilistic map of the epileptogenic zone from seizure semiologies
por: Pérez-García, Fernando, et al.
Publicado: (2022) -
Probabilistic landscape of seizure semiology localizing values
por: Alim-Marvasti, Ali, et al.
Publicado: (2022) -
Seizure Semiology: Its Value and Limitations in Localizing the Epileptogenic Zone
por: Tufenkjian, Krikor, et al.
Publicado: (2012) -
Temporal Lobe Epilepsy Semiology
por: Blair, Robert D. G.
Publicado: (2012) -
Localization of the Epileptogenic Zone by Multimodal Neuroimaging and High-Frequency Oscillation
por: Li, Xiaonan, et al.
Publicado: (2021)