Cargando…
Patient-Specific Sedation Management via Deep Reinforcement Learning
Introduction: Developing reliable medication dosing guidelines is challenging because individual dose–response relationships are mitigated by both static (e. g., demographic) and dynamic factors (e.g., kidney function). In recent years, several data-driven medication dosing models have been proposed...
Autores principales: | Eghbali, Niloufar, Alhanai, Tuka, Ghassemi, Mohammad M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521809/ https://www.ncbi.nlm.nih.gov/pubmed/34713090 http://dx.doi.org/10.3389/fdgth.2021.608893 |
Ejemplares similares
-
Unsupervised EEG Artifact Detection and Correction
por: Saba-Sadiya, Sari, et al.
Publicado: (2021) -
Decision-centered design of a clinical decision support system for acute management of pediatric congenital heart disease
por: Assadi, Azadeh, et al.
Publicado: (2022) -
Deep Multi-Modal Transfer Learning for Augmented Patient Acuity Assessment in the Intelligent ICU
por: Shickel, Benjamin, et al.
Publicado: (2021) -
Utilizing Text Mining, Data Linkage and Deep Learning in Police and Health Records to Predict Future Offenses in Family and Domestic Violence
por: Karystianis, George, et al.
Publicado: (2021) -
Comparison of Empirical Mode Decomposition, Wavelets, and Different Machine Learning Approaches for Patient-Specific Seizure Detection Using Signal-Derived Empirical Dictionary Approach
por: Kaleem, Muhammad, et al.
Publicado: (2021)