Cargando…
The Use of Synthetic Electronic Health Record Data and Deep Learning to Improve Timing of High-Risk Heart Failure Surgical Intervention by Predicting Proximity to Catastrophic Decompensation
Objective: Although many clinical metrics are associated with proximity to decompensation in heart failure (HF), none are individually accurate enough to risk-stratify HF patients on a patient-by-patient basis. The dire consequences of this inaccuracy in risk stratification have profoundly lowered t...
Autores principales: | Guo, Aixia, Foraker, Randi E., MacGregor, Robert M., Masood, Faraz M., Cupps, Brian P., Pasque, Michael K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521851/ https://www.ncbi.nlm.nih.gov/pubmed/34713050 http://dx.doi.org/10.3389/fdgth.2020.576945 |
Ejemplares similares
-
Application of a time-series deep learning model to predict cardiac dysrhythmias in electronic health records
por: Guo, Aixia, et al.
Publicado: (2021) -
Predicting mortality among patients with liver cirrhosis in electronic health records with machine learning
por: Guo, Aixia, et al.
Publicado: (2021) -
Discovering disease–disease associations using electronic health records in The Guideline Advantage (TGA) dataset
por: Guo, Aixia, et al.
Publicado: (2021) -
Development of a Health Information Technology Tool for Behavior Change to Address Obesity and Prevent Chronic Disease Among Adolescents: Designing for Dissemination and Sustainment Using the ORBIT Model
por: Kepper, Maura M., et al.
Publicado: (2021) -
Predicting cardiovascular health trajectories in time-series electronic health records with LSTM models
por: Guo, Aixia, et al.
Publicado: (2021)