Cargando…
Unsupervised EEG Artifact Detection and Correction
Electroencephalography (EEG) is used in the diagnosis, monitoring, and prognostication of many neurological ailments including seizure, coma, sleep disorders, brain injury, and behavioral abnormalities. One of the primary challenges of EEG data is its sensitivity to a breadth of non-stationary noise...
Autores principales: | Saba-Sadiya, Sari, Chantland, Eric, Alhanai, Tuka, Liu, Taosheng, Ghassemi, Mohammad M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521924/ https://www.ncbi.nlm.nih.gov/pubmed/34713069 http://dx.doi.org/10.3389/fdgth.2020.608920 |
Ejemplares similares
-
Patient-Specific Sedation Management via Deep Reinforcement Learning
por: Eghbali, Niloufar, et al.
Publicado: (2021) -
Telemonitoring Techniques for Lung Volume Measurement: Accuracy, Artifacts and Effort
por: Mannée, Denise C., et al.
Publicado: (2020) -
Feasibility of Digital Memory Assessments in an Unsupervised and Remote Study Setting
por: Berron, David, et al.
Publicado: (2022) -
Uncovering the Value of a Historical Paper-Based Collaborative Artifact: The Nursing Unit's Kardex System
por: Mount-Campbell, Austin F., et al.
Publicado: (2020) -
Unsupervised mobile app-based cognitive testing in a population-based study of older adults born 1944
por: Öhman, Fredrik, et al.
Publicado: (2022)