Cargando…
Predicting Anxiety in Routine Palliative Care Using Bayesian-Inspired Association Rule Mining
We propose a novel knowledge extraction method based on Bayesian-inspired association rule mining to classify anxiety in heterogeneous, routinely collected data from 9,924 palliative patients. The method extracts association rules mined using lift and local support as selection criteria. The extract...
Autores principales: | Haas, Oliver, Lopera Gonzalez, Luis Ignacio, Hofmann, Sonja, Ostgathe, Christoph, Maier, Andreas, Rothgang, Eva, Amft, Oliver, Steigleder, Tobias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521932/ https://www.ncbi.nlm.nih.gov/pubmed/34713190 http://dx.doi.org/10.3389/fdgth.2021.724049 |
Ejemplares similares
-
Improving Dyspnoea Symptom Control of Patients in Palliative Care Using a Smart Patch-A Proof of Concept Study
por: Mallick, Mostafa Kamal, et al.
Publicado: (2021) -
Patients in palliative care—Development of a predictive model for anxiety using routine data
por: Hofmann, Sonja, et al.
Publicado: (2017) -
Palliative Care for Stroke Patients and Their Families: Barriers for Implementation
por: Steigleder, Tobias, et al.
Publicado: (2019) -
Rule-Based Models for Risk Estimation and Analysis of In-hospital Mortality in Emergency and Critical Care
por: Haas, Oliver, et al.
Publicado: (2021) -
Editorial: Digital Health for Palliative Care
por: Payne, Cathy, et al.
Publicado: (2022)