Cargando…
Predicting Common Audiological Functional Parameters (CAFPAs) as Interpretable Intermediate Representation in a Clinical Decision-Support System for Audiology
The application of machine learning for the development of clinical decision-support systems in audiology provides the potential to improve the objectivity and precision of clinical experts' diagnostic decisions. However, for successful clinical application, such a tool needs to be accurate, as...
Autores principales: | Saak, Samira K., Hildebrandt, Andrea, Kollmeier, Birger, Buhl, Mareike |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521966/ https://www.ncbi.nlm.nih.gov/pubmed/34713064 http://dx.doi.org/10.3389/fdgth.2020.596433 |
Ejemplares similares
-
Interpretable Clinical Decision Support System for Audiology Based on Predicted Common Audiological Functional Parameters (CAFPAs)
por: Buhl, Mareike
Publicado: (2022) -
Expert validation of prediction models for a clinical decision-support system in audiology
por: Buhl, Mareike, et al.
Publicado: (2022) -
A flexible data-driven audiological patient stratification method for deriving auditory profiles
por: Saak, Samira, et al.
Publicado: (2022) -
Tele-Audiology: Current State and Future Directions
por: D'Onofrio, Kristen L., et al.
Publicado: (2022) -
AUDIOLOGY AND AUDIOLOGICAL MEDICINE
Publicado: (1982)