Cargando…
Applying Artificial Intelligence Methods for the Estimation of Disease Incidence: The Utility of Language Models
Background: AI-driven digital health tools often rely on estimates of disease incidence or prevalence, but obtaining these estimates is costly and time-consuming. We explored the use of machine learning models that leverage contextual information about diseases from unstructured text, to estimate di...
Autores principales: | Zhang, Yuanzhao, Walecki, Robert, Winter, Joanne R., Bragman, Felix J. S., Lourenco, Sara, Hart, Christopher, Baker, Adam, Perov, Yura, Johri, Saurabh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521977/ https://www.ncbi.nlm.nih.gov/pubmed/34713043 http://dx.doi.org/10.3389/fdgth.2020.569261 |
Ejemplares similares
-
A Comparison of Artificial Intelligence and Human Doctors for the Purpose of Triage and Diagnosis
por: Baker, Adam, et al.
Publicado: (2020) -
Artificial Intelligence in Perioperative Medicine: A Proposed Common Language With Applications to FDA-Approved Devices
por: Melvin, Ryan L., et al.
Publicado: (2022) -
Artificial Intelligence for Healthcare in Africa
por: Owoyemi, Ayomide, et al.
Publicado: (2020) -
Expanding the horizon for breast cancer screening in India through artificial intelligent technologies -A mini-review
por: Bhattacharya, Sudip, et al.
Publicado: (2022) -
Healthcare Transformation in Singapore With Artificial Intelligence
por: Liu, Siqi, et al.
Publicado: (2020)